检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周险兵 樊小超[1,2] 任鸽 杨勇[1] ZHOU Xianbing;FAN Xiaochao;REN Ge;YANG Yong(College of Computer Science and Technology,Xinjiang Normal University,Urumqi Xinjiang 830054,China;School of Computer Science and Technology,Dalian University of Technology,Dalian Liaoning 116024,China)
机构地区:[1]新疆师范大学计算机科学技术学院,乌鲁木齐830054 [2]大连理工大学计算机科学与技术学院,辽宁大连116024
出 处:《计算机应用》2021年第8期2205-2211,共7页journal of Computer Applications
基 金:国家自然科学基金资助项目(62066044);新疆维吾尔自治区高等学校科研计划项目(XJEDU2016S066)。
摘 要:作文自动评分(AES)技术能够自动地对作文进行分析和评分,其已成为自然语言处理技术在教育领域应用的热点研究问题之一。针对目前AES方法割裂了深层和浅层语义特征,忽视了多层次语义融合对作文评分影响的问题,提出了一种基于多层次语义特征的神经网络(MLSF)模型进行AES。首先,采用卷积神经网络(CNN)捕获局部语义特征,并采用混合神经网络捕获全局语义特征,以从深层次获取作文的语义特征;其次,利用篇章级的作文主题向量来获取主题层特征,同时针对深度学习模型难以挖掘的语法错误和语言丰富程度特征,构造了少量人工特征以从浅层获取作文的语言学特征;最后,通过特征融合对作文进行自动评分。实验结果表明,所提出模型在Kaggle ASAP竞赛公开数据集的所有子集上性能均有显著提升,该模型的平均二次加权的卡帕值(QWK)达到79.17%,验证了该模型在AES任务中的有效性。The Automated Essay Scoring(AES)technology can automatically analyze and score the essay,and has become one of the hot research problems in the application of natural language processing technology in the education field.Aiming at the current AES methods that separate deep and shallow semantic features,and ignore the impact of multi-level semantic fusion on essay scoring,a neural network model based on Multi-Level Semantic Features(MLSF)was proposed for AES.Firstly,Convolutional Neural Network(CNN)was used to capture local semantic features,and the hybrid neural network was used to capture global semantic features,so that the essay semantic features were obtained from a deep level.Secondly,the feature of the topic layer was obtained by using the essay topic vector of text level.At the same time,aiming at the grammatical errors and language richness features that are difficult to mine by deep learning model,a small number of artificial features were constructed to obtain the linguistic features of the essay from the shallow level.Finally,the essay was automatically scored through the feature fusion.Experimental results show that the proposed model improves the performance significantly on all subsets of the public dataset of the Kaggle ASAP(Automated Student Assessment Prize)champion,with the average Quadratic Weighted Kappa(QWK)of 79.17%,validating the effectiveness of the model in the AES tasks.
关 键 词:英文作文 作文自动评分 多层语义特征 深层语义理解 特征融合 自然语言处理
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151