基于深度卷积神经网络和聚类的左右轨道线检测  被引量:7

Detection of left and right railway tracks based on deep convolutional neural network and clustering

在线阅读下载全文

作  者:曾祥银 郑伯川 刘丹 ZENG Xiangyin;ZHENG Bochuan;LIU Dan(School of Computer Science,China West Normal University,Nanchong Sichuan 637002,China)

机构地区:[1]西华师范大学计算机学院,四川南充637002

出  处:《计算机应用》2021年第8期2324-2329,共6页journal of Computer Applications

基  金:西华师范大学基本科研业务费资助项目(19B045)。

摘  要:为了提高铁路轨道线检测的准确率和速度,提出了一种基于深度卷积神经网络(CNN)和聚类的左右轨道线检测方法。首先,处理数据集的标注图像,将原标注图均匀分割成许多网格,每个网格局部区域的轨道线信息用一个像素点代替,从而构成缩小的轨道线标注图;然后,基于缩小后的轨道线标注图,提出了一种新的深度CNN用于轨道线检测;最后,提出一种聚类方法来区分左右轨道线。对于长宽都为1000像素大小的图片,所提左右轨道线检测方法的检测速度达到155 frame/s,准确率达到96%。实验结果表明,所提方法不仅检测准确率高,而且检测速度快。In order to improve the accuracy and speed of railway track detection,a new method of detecting left and right railway tracks based on deep Convolutional Neural Network(CNN)and clustering was proposed.Firstly,the labeled images in the dataset were processed,each origin labeled image was divided into many grids uniformly,and the railway track information in each grid region was represented by one pixel,so as to construct the reduced images of railway track labeled images.Secondly,based on the reduced labeled images,a new deep CNN for railway track detection was proposed.Finally,a clustering method was proposed to distinguish left and right railway tracks.The proposed left and right railway track detection method can reach accuracy of 96%and speed of 155 frame/s on images with size of 1000 pixel×1000pixel.Experimental results demonstrate that the proposed method not only has high detection accuracy,but also has fast detection speed.

关 键 词:轨道线检测 网格分割 卷积神经网络 聚类 异物侵限 车道线检测 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] TP183[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象