检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘妍妍 樊晶[1] LIU Yanyan;FAN Jing(Tianjin Blood Center,Tianjin 300110,China)
机构地区:[1]天津市血液中心,天津300110
出 处:《中国输血杂志》2021年第7期759-763,共5页Chinese Journal of Blood Transfusion
摘 要:目的建立ARIMA模型,对天津市2010至2018年四类成分血液的临床供血量进行拟合,检验其拟合程度,预测血液供应量,为中心制定血液采集和献血者招募计划提供科学依据。方法收集整理2010~2019年每月临床供血量数据,建立ARIMA模型,利用EVIEWS10.0软件,对2010年1月~2018年12月的临床红细胞类、血浆类、机采血小板与白细胞类4类成分血液供血量数据进行模型识别、参数估计与检验,确定最优模型;考虑数据存在明显的趋势性和季节性,对比后选用季节性模型,预测2019年1~12月4类成分血液临床供血量,与实际值比较,检验拟合程度。结果 4类成分血液的ARIMA模型残差自相关函数和偏自相关函数表明,各组模型回归残差均具有同方差性。供应量预测值基本都在95%CI以内,模型拟合值与实际值曲线趋势基本相同,红细胞类、血浆类、机采血小板、白细胞类平均相对误差为6.19%、5.08%、1.72%、7.17%。结论 ARIMA模型能够较好地拟合天津市血液中心成分血液临床供应量变化趋势,有助于了解未来短期内临床供血需求,为血液采集、献血者招募及库存管理提供参考。Objective To establish an ARIMA model to fit the distributed units of four blood components from 2010 to 2018 in Tianjin and test the fitting degree,so as to predict the future issuing units of these blood products,and provide scientific basis for the blood center to formulate blood collection and donor recruitment plan.Methods The monthly distributed data of blood components from 2010 to 2019 were sorted out to establish the ARIMA model.The model identification,parameter estimation and test of the distributed data concerning red cells,plasma,apheresis platelet and white cells from January 2010 to December 2019 were performed to determine the optimal model using Eviews 10.0 software.Considering the obvious trend and seasonality of data,the seasonal model was chosen to predict the issuing of four blood products in January to December 2019,and the fitting degree was tested by comparing with the actual value.Results The ARIMA model residual autocorrelation function and partial autocorrelation function of four blood components showed that the regression residuals of each product had the same variance.The predicted value of supply was basically within 95%CI,and the curve trend of model fitting value and actual value was basically consistent,The average relative errors of red cells,plasma,apheresis platelets and white cells were 6.19%,5.08%,1.72%and 7.17%,respectively.Conclusion ARIMA model can appropriately fit the change trend of blood supply in Tianjin,which is helpful to understand the clinical requirements in the near future,provide the basis for blood collection,recruitment and inventory management.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49