检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:佟欣 邹自明 白曦 钟佳 胡泽骏[3] 李斌 TONG Xin;ZOU Ziming;BAI Xi;ZHONG Jia;HU Zejun;LI Bin(National Space Science Center,Chinese Academy of Sciences,Beijing 100190;University of Chinese Academy of Sciences,Beijing 100049;Polar Research Institute of China,Shanghai 200136)
机构地区:[1]中国科学院国家空间科学中心,北京100190 [2]中国科学院大学,北京100049 [3]中国极地研究中心,上海200136
出 处:《空间科学学报》2021年第4期654-666,共13页Chinese Journal of Space Science
基 金:中国科学院“十三五”信息化建设专项(XXH13505-04);北京市科技计划空间科学大数据管理与应用服务平台建设项目(Z181100002918002)共同资助。
摘 要:喉区极光是一种发生在电离层对流喉区附近的极光现象,是极光卵向低纬侧延伸出的南北向分立结构,其可能对应由磁鞘高速流与磁层顶作用引发的磁层顶重联过程.喉区极光研究对深入理解太阳风-磁层-电离层耦合过程具有重要意义.从长期观测所积累的大量全天空极光观测数据中准确高效识别出喉区极光结构,是开展喉区极光统计研究的基础.本文利用北极黄河站2003-2017年全天空成像仪的极光观测数据,建立了喉区极光图像标注数据集;基于密集连接卷积神经网络(DenseNet)对极光图像全局高维表征的自动学习,首次实现了喉区极光结构的机器识别.算法对喉区极光识别准确率达96%,且具有良好的泛化性能.研究表明基于深度学习的图像识别方法可用于从海量极光观测数据中自动识别喉区极光事件.Throat aurora is an auroral form frequently observed nearby the ionospheric convection throat region.Extending from the equatorward edge of the dayside auroral oval,and thus appears to be a north-south aligned discrete auroral structure.It is suggested to be the projection of the magnetopause reconnection process caused by the interaction between magnetopause and high-speed jets in magnetosheath.The investigation on throat aurora is meaningful for understanding solar wind-magnetosphere coupling process.It is the fundamental work of statistic study that identifying accurately and efficiently these special auroral structures from plenty of ASI images.Through preprocessing and labeling ASI images from Yellow River Station during 2003 and 2017,the throat auroral dataset is established,and the feature space of the auroral data is explored by using DenseNet and classified simultaneously based on whether an observation image has a structure of throat aurora,through which machine identification of throat auroral is achieved for the first time.The accuracy of the identification model is close to 96%and it has good generalization performance.
分 类 号:P353[天文地球—空间物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229