检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周靖宇[1] 谢婷婷[1] 林冰玲 葛秀云 单慧明[1] 石桥[1] 戚玉龙[1] 成官迅[1] ZHOU Jingyu;XIE Tingting;LIN Bingling;GE Xiuyun;SHAN Huiming;SHI Qiao;QI Yulong;CHENG Guanxun(Department of Radiology,Peking University Shenzhen Hospital,Shenzhen,Guangdong Province 518000,China)
机构地区:[1]北京大学深圳医院医学影像科,广东深圳518000
出 处:《实用放射学杂志》2021年第8期1286-1289,1297,共5页Journal of Practical Radiology
基 金:北京大学深圳医院科研项目(LCYJ2017006)。
摘 要:目的探讨反向传播人工神经网络(BP-ANNs)预测非肿块型乳腺癌新辅助化疗(NAC)疗效的应用。方法纳入非肿块型乳腺癌52例,所有病例完成NAC 8个周期后行根治性切除术,根据Millei-Payne病理评级分为组织学显著反应(MHR)组与非显著反应(NMHR)组。动态对比增强磁共振成像(DCE-MRI)检查在治疗前(E1)、NAC 2个周期后(E2)和NAC 4个周期后(E3)进行,共3次。从DCE-MRI图像中提取纹理特征,在R Project中构建BP-ANNs模型预测非肿块型乳腺癌NAC疗效。结果52例病例中,MHR组22例,NMHR组30例。以下纹理特征存在统计学差异:直方方差(E1)、直方一致性(E1)、惯性矩(E1)、逆差距(E1)、直方一致性(E2)、直方均值(E3)、直方方差(E3)、直方一致性(E3)、熵比值(E2/E1)。采用上述参数构建BP-ANNs模型,在训练组模型预测准确度92.3%,在测试组模型预测准确度69.2%。结论采用治疗前的直方方差、一致性、惯性矩、逆差距,NAC 2个周期后的直方一致性,NAC 4个周期后的直方均值、方差、一致性以及NAC 2个周期与治疗前的熵比值构建BP-ANNs模型可以预测非肿块型乳腺癌NAC疗效。Objective To explore the application of back propagation artificial neural networks(BP-ANNs)to predict the efficacy of neoadjuvant chemotherapy(NAC)for non-mass breast cancer.Methods 52 patients with non-mass breast cancer were enrolled.All of the patients underwent radical resection after 8 cycles of NAC,and were divided into the major histological response(MHR)group and the non-major histological response(NMHR)group according to the Miller-Payne system.Dynamic contrast-enhanced magnetic resonace imaging(DCE-MRI)was performed before treatment,after 2 cycles of NAC and 4 cycles of NAC.Texture features extraction from DCE-MRI and BP-ANNs modeling was built in R Project to predict the efficacy of NAC.Results Among the 52 patients,there were 22 cases of MHR and 30 cases of NMHR.Variance,consistencyfinertia,homogeneity,consistency,mean,variance,consistency and entropy ratio showed significant differences between the two groups.The parameters above were used to build BP-ANNs model.This model achieved an accuracy of 92.3%in the training group and 69.2%in the test group.Conclusion BP-ANNs model built with variance,consistency,inertia f homogeneity before treatment,consistency after 2 cycles of NAC,mean,variance,consistency after 4 cycles of NAC,and entropy ratio of after 2 cycles of NAC to before treatment can predicts the efficacy of NAC for non-mass breast cancer.
关 键 词:乳腺癌 新辅助化疗 纹理特征 反向传播人工神经网络
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28