检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王平凯[1] 孙光泽 朱芮萱 Wang Pingkai;Sun Guangze;Zhu Ruixuan(School of Electrical and Mechanical Engineering,Changchun University of Technology,Changchun 130012,China)
出 处:《机电工程技术》2021年第7期29-32,共4页Mechanical & Electrical Engineering Technology
基 金:吉林省发改委项目(编号:2020C018-3)。
摘 要:针对仓储环境下叉车机器人托盘识别的应用场景,以及提高托盘目标检测的准确性和鲁棒性,提出了一种基于YOLOv3算法改进后的物体识别方法。运用K-Means++聚类方法重新聚类出更适合托盘检测的Anchor Box,通过分析托盘成像在图像坐标系中横轴和纵轴的密度分布,继而调整了划分网格机制,改进损失函数。并在运用数据增强手段的托盘数据集上进行训练以及测试,与其他算法进行对比,结果显示基于改进的YOLOv3托盘检测方法在测试集上的准确率达到94.6%,识别速率达到47帧/s。Aiming at the application scenario of forklift robot pallet recognition in storage environment,and to improve the accuracy and robustness of pallet target detection,an object recognition method based on the improved YOLOv3 algorithm was proposed.The K-means++clustering method was used to re-cluster the Anchor Box that was more suitable for pallet detection.By analyzing the density distribution of the horizontal axis and the vertical axis of pallet imaging in the image coordinate system,the grid partition mechanism was adjusted and the loss function was improved.Training and testing were carried out on the pallet data set by using data enhancement methods and compared with other algorithms,the results show that the improved YOLOv3 pallet detection method has an accuracy rate of 94.6%and a recognition rate of 47 fps on the test set.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117