检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田瑶天 王宝 李叶琴 王滕[1] 田力文 韩波[3] 王翠艳[4] TIAN Yaotian;WANG Bao;LI Yeqin;WANG Teng;TIAN Liwen;HAN Bo;WANG Cuiyan(School of Medicine,Shandong University,Jinan 250012,Shandong,China;Department of Radiology,Qilu Hospital of Shandong University,Jinan 250012,Shandong,China;Department of Pediatric Cardiology,Shandong Provincial Hospital Affiliated to Shandong First Medical University,Jinan 250021,Shandong,China;Department of Radiology,Shandong Provincial Hospital Affiliated to Shandong First Medical University,Jinan 250021,Shandong,China)
机构地区:[1]山东大学临床医学院,山东济南250012 [2]山东大学齐鲁医院放射科,山东济南250012 [3]山东第一医科大学附属山东省立医院小儿心脏科,山东济南250021 [4]山东第一医科大学附属山东省立医院放射科,山东济南250021
出 处:《山东大学学报(医学版)》2021年第7期43-49,共7页Journal of Shandong University:Health Sciences
基 金:山东省重点研发项目(2016GSF201032);山东省自然科学基金(ZR2019MH25)。
摘 要:目的探讨基于可解释性心脏磁共振(CMR)参数的机器学习模型对儿童心肌炎患者预后的预测价值。方法回顾性收集2012年9月至2017年11月临床诊断为儿童心肌炎患者45例,其中男28例,女17例,4~16岁,平均(9.8±3.4)岁。根据随访过程中是否出现心血管不良事件(ACE),将患者分为预后不良组(n=18例)和预后良好组(n=27例)。所有患者于住院治疗后进行CMR扫描,获取心功能、心肌应变、首过灌注及延迟强化(LGE)相关方面共206个可解释性的CMR参数。利用MATLAB分类学习应用程序对参数进行训练,挑选精度最高的模型作为预测模型。采用受试者工作特征曲线(ROC)对模型的预测效能进行评估。结果提取出14个可解释性的CMR参数,挑选其中无显著相关性的参数构建组合参数。单一参数中,美国心脏协会(AHA)分段法中的第7节段最大信号强度百分比(SI%)预测性能最佳,曲线下面积(AUC)、预测敏感性和特异性分别为0.790、0.667和0.833;组合参数达到了最高的预测性能,AUC、预测敏感性和特异性分别为0.940、0.750和0.889。结论根据可解释性的CMR参数建立的机器学习模型对儿童心肌炎患者预后的预测具有良好价值,且在预后评估中组合参数比单一参数预测性能更高。Objective To develop and validate machine learning models based on interpretive cardiac magnetic resonance(CMR) parameters for prognosis evaluation of pediatric myocarditis. Methods A retrospective analysis of 45 pediatric patients with myocarditis was conducted. According to whether adverse cardiac events(ACE) occurred, the patients were divided into poor prognosis group(n=18) and good prognosis group(n=27). CMR scans were performed after hospitalization and 206 interpretive CMR parameters about myocardial function, myocardial strain, first-pass perfusion and late gadolinium enhancement(LGE) were obtained. The parameters were trained by the classification learner App in MATLAB and the training model with the highest accuracy was chosen as the best model. The receiver-operating characteristics(ROC) curve of the machine learning model was drawn to determine the prognostic performance. Results A total of 14 CMR parameters were selected as predictive factors, and those without correlation were used to construct the combined parameters. Among all these parameters, maximal signal intensity percentage(SI %) of the 7 th segment of AHA had the best performance(AUC: 0.790, sensitivity: 0.667, specificity: 0.833). Combined parameters achieved the highest performance(AUC: 0.940, sensitivity: 0.750, specificity: 0.889). Conclusion The machine learning models based on interpretive CMR parameters can be used for prognosis evaluation of pediatric myocarditis, and combination of interpretive CMR parameters training with machine learning is more accurate than single ones.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.8.11