检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈铭 陈新[1] 余辉敏 CHEN Ming;CHEN Xin;YU Huimin(School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China)
出 处:《兵器装备工程学报》2021年第8期227-232,共6页Journal of Ordnance Equipment Engineering
基 金:国家重点研发计划项目(2017YFB1001801);中央高校基本科研业务费专项资金项目(30917012102)。
摘 要:为了在道路超限超载检测中实时准确识别出车辆轴型,提出了一种基于SSD卷积神经网络的车辆轴型检测方法。该模型基于特征图对车辆轴型进行识别,在VGG16-SSD的基础上加入二次训练的策略,得到优化后的SSD算法模型。模型经过优化后,收敛速度加快,损失函数降低了1%,检测能力提升,二轴车辆轴型的识别准确率达89%。优化后的SSD算法模型能够有效识别不同轴型的车辆,该模型能够满足公路非现场检测需要,检测能力和检测精度能满足公路超限超载检测。Vehicle axle type is an important basis for judging vehicle load.In order to identify vehicle axle type accurately in real-time in road overload detection,a vehicle axle type detection method based on SSD convolution neural network was proposed.In this model,the vehicle axle type was identified based on the feature map,and the optimized SSD algorithm model was obtained by adding secondary training strategy on the basis of vgg16-ssd.After optimization,the convergence speed of the model was accelerated,the loss function(loss)was reduced by 1%,the detection ability was improved,and the recognition accuracy of two axle vehicle axle type reached 89%.The optimized SSD algorithm model can effectively identify vehicles with different axle types.The model can meet the needs of off-site highway detection,and the detection ability and accuracy can be guaranteed,which can be used for highway overload detection.
关 键 词:SSD网络算法模型 车辆轴型识别 超限超载治理 卷积神经网络
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.43.130