基于全航段QAR数据和卷积神经网络的航空发动机状态辨识  被引量:15

Aero-engine status identification based on full-segment QAR data and convolutional neural network

在线阅读下载全文

作  者:王奕惟 莫李平 王奕首 殷锴 赵奇 卿新林 WANG Yiwei;MO Liping;WANG Yishou;YIN Kai;ZHAO Qi;QING Xinlin(School of Aerospace Engineering,Xiamen University,Xiamen Fujian 361102,China;Commercial Aircraft Engine Company Limited,Aero Engine Corporation of China,Shanghai 200241,China;Hunan Aviation Powerplant Research Institute,Aero Engine Corporation of China,Zhuzhou Hunan 412000,China)

机构地区:[1]厦门大学航空航天学院,福建厦门361102 [2]中国航空发动机集团有限公司商用航空发动机有限责任公司,上海200241 [3]中国航空发动机集团有限公司湖南动力机械研究所,湖南株洲412000

出  处:《航空动力学报》2021年第7期1556-1563,共8页Journal of Aerospace Power

摘  要:为了充分挖掘全航段飞行数据中蕴含的丰富信息以提高发动机状态辨识的准确率,提出一种基于全航段快速存取记录器(QAR)数据和卷积神经网络的发动机状态辨识方法。该方法将每次飞行循环的全航段QAR数据变换为一个红绿蓝(RGB)多通道样本实现全航段数据图像化处理,根据发动机维修记录中的水洗时间,将发动机划分为不同的衰退状态,采用卷积神经网络对不同衰退状态进行分类和辨识。该方法经某航空公司飞机QAR数据验证,结果表明:基于全航段QAR数据的衰退状态辨识算法的精确度相比于仅使用巡航段数据的精确度提升超过13%,辨识准确率达到98%。To improve the identification accuracy of engine states,an identification method based on full-segment quick access recorder(QAR)data and convolutional neural network was proposed by extracting and mining rich information from the real flight data.The full-segment QAR data of each flight cycle was transformed into a multichannel imaged sample in the red,green and blue(RGB)channels to realize the imaging process of the full-segment QAR data.Engine state was divided into different decay states according to the washing time in the engine maintenance record.The convolutional neural network was used to identify the different decay states of the engine.The proposed method was verified using the QAR data of a commercial plane.The results showed that the proposed method based on the full-segment QAR data improved the identification accuracy up to 98%and was 13%higher than that based on the data of the cruise segment only.

关 键 词:状态辨识 全航段 快速存取(QAR)数据 多通道图像化数据 卷积神经网络 

分 类 号:V231[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象