检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴德军[1] 宋梦钰 WU De-jun;SONG Meng-yu(School of Science,Lanzhou Univ.of Tech.,Lanzhou 730050,China)
出 处:《兰州理工大学学报》2021年第4期149-156,共8页Journal of Lanzhou University of Technology
基 金:国家自然科学基金(11761047)。
摘 要:设R是具有单位元的结合环,X是包含所有平坦模的R-模类.引入X-丁投射模和X-丁投射维数的定义并研究了相关性质.如果存在正合列P=∶…→P1→P0→P0→P1→…,其中Pi,Pi是投射模,i∈Z,对于任意R-模F∈X,HomR(-,F)作用在正合列P上保持正合,并且M=Ker(P0→P1),那么称M是X-丁投射模.证明了X-丁投射模类是投射可解的并且X-丁投射模保持直和与直和项,同时证明了若GX-Dpd(R)<∞,则(X-DP(R),(X-DP(R))⊥)是完备遗传余挠对.Let R be an associative ring with identity and X is a class that contains all flat R-modules,the definitions of X-Ding projective modules and X-Ding projective dimensions are introduced and the relative properties are studied.A right R-module M is called X-Ding projective if there exists an exact sequence P=∶…→P1→P0→P0→P1→…of projective right R-modules such that M=Ker(P0→P1)and HomR(P,F)is exact whenever F∈X.It is proved that the class of all X-Ding projective modules is projectively resolving and is closed under direct sums and direct summands.In addition,it is proved that if GX-Dpd(R)<∞,then(X-DP(R),(X-DP(R))⊥)is a complete here ditary cotorsion pair.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.136.24