检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李银萍 李文峰 申存骁 张金萍 江永清 LI Yin-Ping;LI Wen-Feng;SHEN Cun-Xiao;ZHANG Jin-Ping;JIANG Yong-Qing(School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101,China)
机构地区:[1]山东建筑大学信息与电气工程学院,济南250101
出 处:《计算机系统应用》2021年第8期305-310,共6页Computer Systems & Applications
摘 要:当前,风力发电量占比不断增加,对风电预测的要求越来越高,但由于风能本身存在的间歇性和不确定性等问题,风电预测精度并不能达到理想的效果.为了降低预测模型复杂性,并提高风电预测精准度,本文提出了一种基于差分进化和规则约简的二型模糊方法.该模型给出了一种剪枝策略进行二型模糊规则的约简,在此基础上,采用差分进化算法进行二型模糊系统全部参数的优化学习.最后,通过与一型模糊方法和支持向量回归方法进行了对比,证明了文中所提出的模型具有更好的预测精度.Nowadays,with a higher proportion of wind power generation,wind power prediction is increasingly demanding.It is,however,not satisfyingly accurate due to the intermittent and uncertain nature of wind energy.In order to reduce the complexity of the prediction model and improve accuracy,we propose a type-2 fuzzy system based on differential evolution and rule reduction in this study.This model provides a pruning strategy for the reduction in type-2 fuzzy rules,based on which and the differential evolution algorithm is adopted to optimize the parameters of the reduced type-2 fuzzy system.Finally,the prediction accuracy of our method is higher than that of the type-1 fuzzy system and the support vector regressor,according to comparison.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49