基于BP神经网络的悬垂绝缘子串风偏角预测模型  被引量:6

BP neural network model for dynamic swingangle of suspended insulator string

在线阅读下载全文

作  者:眭嘉里 严波[1] 林翔 伍川 吕中宾 张博 SUI Jiali;YAN Bo;LIN Xiang;WU Chuan;LYU Zhongbin;ZHANG Bo(College of Aerospace Engineering,Chongqing University,Chongqing 400044,P.R.China;Henan Electric Power Research Institute,Zhengzhou 450052,P.R.China)

机构地区:[1]重庆大学航空航天学院,重庆400044 [2]河南省电力公司电力科学研究院,郑州450052

出  处:《重庆大学学报》2021年第8期114-124,共11页Journal of Chongqing University

基  金:国家电网公司科技项目(52170217000U);国家自然科学基金(51277186)。

摘  要:利用有限元方法模拟不同导线型号、导线初始应力、档距、高差等结构参数的输电线路在随机风作用下的动力响应,得到悬垂绝缘子串的风偏角。进而基于有限元模拟结果和BP神经网络构建风偏角的预测模型,将导线型号、档距、高差、导线初始应力、基本风速、保证系数作为模型的输入,悬垂绝缘子串的风偏角作为输出,通过机器学习,并采用评价指标评估其准确性,对模型进行优化。该模型可以方便快捷地预测悬垂绝缘子串的风偏角,为线路塔头绝缘设计提供依据。The dynamic swing angles of suspended insulator strings of transmission lines with different parameters including conductor type,initial stress in conductor,span length and height difference,under stochastic wind field are numerically simulated by means of the finite element method.Based on the finite element simulation results and the BP neural network,a prediction model for the swing angle is constructed.In the model,the conductor type,span length,height difference,initial stress,wind speed and guarantee factor are taken as the input parameters,and the swing angle as the output parameter.The model is optimized by machine learning and accuracy evaluation with specific evaluation indicators.Swing angles of suspended insulator string in stochastic wind field can be predicted conveniently and fast with this model,which provides a basis for the insulation design of tower head in transmission lines.

关 键 词:输电线路 风偏角 随机风 BP神经网络 预测模型 

分 类 号:TM74[电气工程—电力系统及自动化] TM77

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象