基于随机生存森林的信用评分大数据研究  被引量:3

在线阅读下载全文

作  者:周丽峰 

机构地区:[1]长沙学院经济与管理学院,湖南长沙410022

出  处:《统计与管理》2021年第10期11-18,共8页Statistics and Management

基  金:国家统计局科研项目“大数据背景下的小企业信用评分技术研究”(2017LY54);湖南省社科基金一般项目“大规模信用评分的非参数统计推断研究”(18YBA020);湖南省教育厅科学研究项目一般项目“信用评分中的生存大数据分析方法及应用研究”(20C0155)。

摘  要:信用评分技术是现代金融机构预测贷款违约风险的主要方法,目前银行、互联网金融平台等金融机构在原来关注违约概率的基础上,提出了估计不同时刻的违约风险及贷款寿命分布等更高要求。因此,常规基于分类的信用评分方法不再适用,有必要探索基于生存分析的信用评分模型。本研究将随机生存森林的方法应用于信用大数据的风险预测,并分别将其与Cox比例风险模型、基于Lasso惩罚的Cox模型、基于岭估计惩罚的Cox模型进行比较分析,不同情形的实验结果显示,随机生存森林的预测效果最好。此外,我们还借助随机生存森林对变量进行重要性评分排序并予以解释。本研究对提高贷款机构的决策能力和水平,具有一定的参考意义。

关 键 词:信用评分 随机生存森林 COX比例风险模型 惩罚Cox模型 

分 类 号:F820.4[经济管理—财政学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象