车联网中基于短期标识的Sybil攻击防御方法  被引量:6

Short-term Identification Based Sybil Attack Defense Method in Vehicular Network

在线阅读下载全文

作  者:张春花[1] 马竟宵 ZHANG Chun-hua;MA Jing-xiao(College of Electronics and Information Engineering,Tongji University,Shanghai 201804,China)

机构地区:[1]同济大学电子与信息工程学院,上海201804

出  处:《小型微型计算机系统》2021年第8期1727-1734,共8页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61871290)资助。

摘  要:针对车联网中基于伪造、冒用和滥用假名身份而伪造车辆的Sybil攻击,提出为每个车辆仅分配一个在特定区域内有效的短期标识(称为媒介访问码,Medium Access Code,MAC)的Sybil攻击抵御方法 SISD(Short-term Identification based Sybil attack Defense).该方法基于聚簇网络结构和椭圆曲线离散对数问题实现安全有效的两级MAC认证机制.车辆将持有通过认证的合法MACs的列表,继而,通过该列表可快速检查收到的安全消息,以高效地过滤通过伪造、冒用和滥用假名身份散布的安全消息.与现有Sybil攻击检测方法和典型车辆身份认证机制相比,在常规车载硬件配置条件下,该方案能更好地满足车联网安全应用在抵抗基于伪造、冒用和滥用假名身份的Sybil攻击方面的安全需求,且具有更优的计算时间开销、通信开销、通信延迟和丢包率.To resist Sybil attacks based on forgery,impersonate and abuse of pseudonym identity in vehicular networks,we propose a short-term identification(named medium access code,MAC)based Sybil attack defense method,named SISD,which allocates only one effective short-term identification for each vehicle in a specific region.SISD bases on the clustering network structure and elliptic curve discrete logarithm problem to achieve a security and effective two-level MAC authentication scheme.Vehicles will hold a list of authenticated legal MACs,through which vehicles can quickly check the received safety messages,and the safety messages with forgery,impersonate and abuse pseudonym identity can be filtered out effectively.Compared with the existing Sybil attack detection methods and typical vehicle identity authentication mechanisms,under the condition of conventional vehicle hardware configuration,SISD can better meet the security requirements of vehicular networks safety applications in resisting Sybil attacks based on forgery,impersonate and abuse of pseudonym identity,and has better computing time,communication costs,communication delay and packet loss rate.

关 键 词:车联网 SYBIL攻击 短期标识 聚簇 椭圆曲线离散对数 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象