一维压电准晶断裂问题边界无单元法分析  

Fracture Behavior of One-dimensional Piezoelectric Quasicrystals Based on the Boundary Element-free Method

在线阅读下载全文

作  者:李艳松 刘金玲[1] LI Yansong;LIU Jinling(College of Architectural Engineering,Guangdong University of Petrochemical Technology,Maoming 525000,China;College of Civil Engineering,Hebei University of Engineering,Handan 056038,China)

机构地区:[1]广东石油化工学院建筑工程学院,广东茂名525000 [2]河北工程大学土木工程学院,河北邯郸056038

出  处:《广东石油化工学院学报》2021年第4期58-61,共4页Journal of Guangdong University of Petrochemical Technology

基  金:河北省自然科学基金(A2018402158);河北省留学回国人员资助项目(C201805)。

摘  要:采用一种新型边界无单元法研究了一维压电准晶复杂裂纹的断裂问题。该方法采用只含有柯西奇异性的广义面力边界积分方程,位错密度函数由未知权函数表示,权函数由移动Kriging插值得到。给出裂纹问题数值算例,计算了声子场和相位子场的应力强度因子和电位移强度因子。结果表明该方法精度高、适用性强。The crack problem of infinite one-dimensional piezoelectric quasicrystals is studied by means of extended traction boundary element-free method.Using integration by parts of an extended traction boundary integral equation that only involves Cauchy singularity is derived.The extended dislocation density on the crack surface is expressed as the combination of the characteristic terms and unknown weight functions,and the moving Kriging interpolation method is adopted to approximate the unknown weight functions.The numerical scheme of the extended traction boundary element-free method is established,and an effective numerical procedure is used to evaluate the Cauchy singular integrals.The stress intensity factors of the phonon and phason,electric displacement intensity factor are computed for two kinds of cracked problems and good numerical results are obtained.The fracture properties of these crack problems are further discussed.

关 键 词:边界积分方程 压电准晶 裂纹问题 移动Kriging插值 边界无单元法 

分 类 号:O346[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象