检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫健[1] YAN Jian(Personnel Office,Beijing Information Science&Technology University,Beijing 100192,China)
出 处:《北京信息科技大学学报(自然科学版)》2021年第4期54-58,共5页Journal of Beijing Information Science and Technology University
基 金:促进高校内涵发展科研水平提高项目(2020KYNH211)。
摘 要:海上风电功率预测是智能电网科学规划的先决条件,其预测误差的大小是影响电力系统调度的关键因素。通过分析海上风速、风向的变化规律与天气状况之间的关系,寻找海上风电功率的变化规律;利用K均值聚类法,构建短期风电功率预测模型的训练数据样本;利用广义回归神经网络,构建海上风电功率预测模型,该模型能够有效降低海上风电功率预测误差。最后通过具体实例验证了所构建模型的有效性。The prediction of offshore wind power forecasting is a prerequisite for the scientific planning of Smart Power Grid,and the magnitude of forecasting error is the key factor that affects the dispatch of power system.In this paper,the relationship between wind speed and wind direction and weather conditions was analyzed to find the variation of wind power at sea,and the K-means clustering method was used to build the training data sample of short-term wind power forecasting model.Based on the generalized regression neural network,a forecasting model of offshore wind power was constructed,which can reduce the forecasting error of offshore wind power effectively.Finally,an example was given to verify the validity of the model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145