检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡常福[1] 刘科 李漳 HU Changfu;LIU Ke;LI Zhang(School of Civil Engineering and Architecture,East China Jiaotong University,Nanchang 330013,China)
机构地区:[1]华东交通大学土木建筑学院,江西南昌330013
出 处:《铁道科学与工程学报》2021年第8期2129-2136,共8页Journal of Railway Science and Engineering
基 金:国家重点研发计划项目(2021YFE0105600);国家自然科学基金资助项目(51568020,52168017);江西省交通运输厅科技项目(2019H0011)。
摘 要:针对抛物线拱面内线性位移没有解析解的现状,提出一种高精度的近似解析方法用以解决这个问题。在非圆弧拱面内应变表达式的基础上,基于虚功原理推演了面内线性平衡微分方程,并使用泰勒展开近似得到微分方程的近似解析解;基于弹性压缩与压缩应变沿弧长积分相等的原理,推演得到水平反力的解析,进而得到满足所有边界的竖向位移、水平位移及面内转角的高精度近似解析。算例分析结果表明,本文方法与有限元数值解吻合较好,可以作为实用公式为工程界参考。Because of no analytical solution for the in-plane linear deformation of parabolic arches,this paper proposed a high accurate approximate analytical method to solve this problem.The in-plane linear equilibrium differential equation was derived based on the strain-displacement expression for non-circular arches and the virtual work principle,and the approximate analytical solution of the differential equation was obtained by using the Taylor approximate method.The analytical solution for horizontal reaction force of fixed parabolic arches was deduced from the basic principle that the change of curve arc length of fixed parabolic arches can be calculated by using the axial force as well as the membrane strain,and then the approximate close-formed solutions for vertical displacement,horizontal displacement and rotation displacement were derived.Comparisons with the results of finite element method demonstrate that the calculation results of proposed method agree well with the finite element simulationresults,and the proposed approximate analytical solutions can be used for the practical expressions of arch bridges.
关 键 词:抛物线拱 面内位移 近似解析 应变-位移关系 虚功原理
分 类 号:U441[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30