检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李慧嘉 黄照词 王文璇 夏承遗[2] Li Hui-Jia;Huang Zhao-Ci;Wang Wen-Xuan;Xia Cheng-Yi(School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China;School of Computer and Communication Engineering,TianjinUniversity of Technology,Tianjin 300384,China)
机构地区:[1]北京邮电大学理学院,北京100876 [2]天津理工大学计算机与通信工程学院,天津300384
出 处:《物理学报》2021年第17期382-396,共15页Acta Physica Sinica
基 金:北京邮电大学提升科技创新能力行动计划(批准号:2020XD-A01-2);国家自然科学基金(批准号:71871233)资助的课题.
摘 要:高效率的网络分析方法对于分析、预测和优化现实群体行为具有重要的作用,而加权机制作为网络重构化的重要方式,在生物、工程和社会等各个领域都有极高的应用价值.虽然已经得到越来越多的关注,但是现有加权方法数量还很少,而且在不同拓扑类型和结构特性现实网络中的效果和性能有待继续提高.本文提出了一种新型的双模式加权机制,该方法充分利用网络的全局和局部的重要拓扑属性(例如节点度、介数中心性和紧密中心性),并构建了两种新型的运行模式:一种是在原始模式中通过增加桥边的权重来提高同步能力;另一种是在逆模式中通过弱化桥边的权重来提高聚类检测.此外,该加权机制仅受单一参数α的影响,非常便于调控.在人工基准网络和现实世界网络中的实验结果均验证了该模型的有效性,可以广泛应用于大规模的现实世界网络中.For many real world systems ranging from biology to engineering,efficient network computation methods have attracted much attention in many applications.Generally,the performance of a network computation can be improved in two ways,i.e.,rewiring and weighting.As a matter of fact,many real-world networks where an interpretation of efficient computation is relevant are weighted and directed.Thus,one can argue that nature might have assigned the optimal structure and weights to adjust the level of functionality.Indeed,in many neural and biochemical networks there is evidence that the synchronized and coordinated behavior may play important roles in the system’s functionality.The importance of the network weighting is not limited to the nature.In computer networks,for example,designing appropriate weights and directions for the connection links may enhance the ability of the network to synchronize the processes,thus leading the performance of computation to improve.In this paper,we propose a new two-mode weighting strategy by employing the network topological centralities including the degree,betweenness,closeness and communication neighbor graph.The weighting strategy consists of two modes,i.e.,the original mode,in which the synchronizability is enhanced by increasing the weight of bridge edges,and the inverse version,in which the performance of community detection is improved by reducing the weight of bridge edges.We control the weight strategy by simply tuning a single parameter,which can be easily performed in the real world systems.We test the effectiveness of our model in a number of artificial benchmark networks as well as real-world networks.To the best of our knowledge,the proposed weighting strategy outperforms previously published weighting methods of improving the performance of network computation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.123.251