基于三角剖分的内窥镜肠道手术机器人体素地图构建方法  

A Voxel Map Construction Method of Endoscopic Intestinal Surgery Robot Based on Triangulation

在线阅读下载全文

作  者:郭文康 梅剑东 孙荣川[1] 郁树梅 孙立宁[1] GUO Wenkang;MEI Jiandong;SUN Rongchuan;YU Shumei;SUN Lining(School of Mechanical and Electric Engineering,Soochow University,Suzhou 215021,China)

机构地区:[1]苏州大学机电工程学院,江苏苏州215021

出  处:《机器人》2021年第4期395-405,共11页Robot

基  金:国家自然科学基金(61773273)。

摘  要:面向全自主内窥镜机器人诊疗系统,提出一种人体肠道内部结构体素地图构建方法,来实现内窥镜位姿的准确估计,同时构建可以用于手术机器人导航的体素地图.该方法使用单目内窥镜采集肠道内部图像序列,首先基于单目SLAM(同步定位与地图创建)方法估计内窥镜轨迹,同时针对肠道内部结构构建稀疏地图.然后基于稀疏特征点地图,提出一种基于三角剖分的稀疏地图稠密化方案,构建具有稠密几何信息、利于手术器械路径规划的体素地图.分别在模拟肠道和离体猪肠道内进行体素地图构建的实验研究和误差评估,在模拟肠道中直径和病灶尺寸的均方误差分别为1.16 mm和0.81 mm,内窥镜定位均方误差为2.163 mm.Aiming at a fully autonomous robotic system for endoscopic diagnosis and treatment, a method for constructing a voxel map of the internal structure of the human intestine is proposed to realize accurate estimation of the endoscope pose and construct a voxel map for the navigation of the surgical robot. A monocular endoscope is used to capture image sequences of the intestinal interior in this method. Firstly, the endoscopic trajectory is estimated based on a monocular SLAM(simultaneous localization and mapping) method and a sparse map of the internal structure of the intestinal tract is constructed. Based on the sparse feature point map, a densification solution of sparse map based on triangulation is proposed to construct a voxel map with dense geometric information for path planning of surgical instruments. In experimental study,voxel maps are constructed in the simulated intestine and the in vitro pig intestine respectively, and the error evaluation is carried out. The mean square errors of the diameter and lesion size in the simulated intestine are 1.16 mm and 0.81 mm,respectively. The mean square error of endoscopic positioning is 2.163 mm.

关 键 词:机器人建模 SLAM(同步定位与地图创建) 内窥镜 体素模型 

分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象