基于改进DenseNet的牛眼图像特征提取方法  被引量:13

Cattle eye image feature extraction method based on improved DenseNet

在线阅读下载全文

作  者:郑志强[1] 胡鑫 翁智[1] 王雨禾 程曦 ZHENG Zhiqiang;HU Xin;WENG Zhi;WANG Yuhe;CHENG Xi(College of Electronic Information Engineering,Inner Mongolia University,Hohhot Inner Mongolia 010021,China)

机构地区:[1]内蒙古大学电子信息工程学院,呼和浩特010021

出  处:《计算机应用》2021年第9期2780-2784,共5页journal of Computer Applications

基  金:国家自然科学基金资助项目(61966026);内蒙古自然科学基金资助项目(2020MS06015)。

摘  要:针对牛眼图像特征提取过程中由于梯度消失和过拟合造成的识别准确率较低的问题,提出一种基于改进DenseNet的牛眼图像特征提取方法。首先采用缩放指数线性单元(SeLU)激活函数防止网络梯度消失;其次通过DropBlock随机丢弃牛眼图像的特征块,从而防止过拟合,并加强网络的泛化能力;最后将改进后的稠密层进行叠加以组成改进的DenseNet(Dense convolutional Network)。在自建牛眼图像数据集上进行特征信息提取识别实验的结果表明,改进后的DenseNet识别准确率、精确率和召回率分别为97.47%、98.11%和97.90%;较改进前的网络在识别准确率、精确率和召回率上分别提升了2.52个百分点、3.32个百分点和2.94个百分点,可见改进后的网络具有较高的精度与鲁棒性。To address the problem of low recognition accuracy caused by vanishing gradient and overfitting in the cattle eye image feature extraction process,an improved DenseNet based cattle eye image feature extraction method was proposed.Firstly,the Scaled exponential Linear Unit(SeLU)activation function was used to prevent the vanishing gradient of the network.Secondly,the feature blocks of cattle eye images were randomly discarded by DropBlock,so as to prevent overfitting and strengthen the generalization ability of the network.Finally,the improved dense layers were superimposed to form an improved Dense convolutional Network(DenseNet).Feature information extraction recognition experiments were conducted on the self-built cattle eyes image dataset.Experimental results show that the recognition accuracy,precision and recall of the improved DenseNet are 97.47%,98.11%and 97.90%respectively,and compared to the network without improvement,the above recognition accuracy rate,precision rate,recall rate are improved by 2.52 percentage points,3.32 percentage points,2.94 percentage points respectively.It can be seen that the improved network has higher precision and robustness.

关 键 词:牛眼图像 特征提取 深度学习 DenseNet DropBlock 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象