正则化参数自动优选的RAKSVD方法在地震弱信号去噪中的应用  被引量:4

Application of RAKSVD method with automatic optimization of regularization parameters in seismic weak signal denoising

在线阅读下载全文

作  者:乐友喜[1] 杨杰飞 陈艺都 吴佳伟 杨涛 YUE Youxi;YANG Jiefei;CHEN Yidu;WU Jiawei;YANG Tao(School of Geosciences in China University of Petroleum(East China),Qingdao 266580,China;Yellow River Engineering Consulting Company Limited,Zhengzhou 450003,China)

机构地区:[1]中国石油大学(华东)地球科学与技术学院,山东青岛266580 [2]黄河勘测规划设计研究院有限公司,河南郑州450003

出  处:《中国石油大学学报(自然科学版)》2021年第4期42-48,共7页Journal of China University of Petroleum(Edition of Natural Science)

基  金:国家重大科技专项(2016ZX05026-002)。

摘  要:K均值-奇异值分解(KSVD)去噪方法存在病态问题,因此需要引入正则项进行改进。通过改进正则化近似参数设定,利用AKSVD(近似KSVD)方法对弱信号的识别优势,提出正则化参数自动优选的RAKSVD去噪方法,并进行模型测试和实际资料处理。结果表明,该方法不仅取得了预期的去噪效果,而且更加注重对弱信号的保护,去噪后地震弱信号没有发生畸变,从而有利于对弱信号的提取和识别,同时计算效率还得到了提升。Due to the ill conditioned problem of K-means singular value decomposition(KSVD)denoising method,it is necessary to introduce a regularization term to improve the stability of the method.In this paper,by improving the regularization parameter setting,and taking advantage of the approximate KSVD(AKSVD)method for weak signal recognition,a regularized approximate K-means singular value decomposition(RAKSVD)denoising method with automatic optimization of regularization parameters is proposed.Model test and practical application show that this method not only achieves the expected denoising effect,but also pays more attention to the protection of weak signal.After denoising,the weak seismic signal has no distortion,which is beneficial to the extraction and recognition of weak signal.In addition,the calculation efficiency is also improved.Therefore,this method has certain practical application value.

关 键 词:地震弱信号 KSVD字典 正则化 去噪 

分 类 号:P631.4[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象