检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李宏[1] 李定文 朱海琦 田雷 李富[2] LI Hong;LI Dingwen;ZHU Haiqi;TIAN Lei;LI Fu(School of Electrical Engineering and Information,Northeast Petroleum University,Daqing 163318,Heilongjiang Province,China;No.1 Drilling Company,Daqing Drilling Engineering Company,Daqing 163458,Heilongjiang Province,China)
机构地区:[1]东北石油大学电气信息工程学院,黑龙江大庆163318 [2]大庆钻探工程公司钻井一公司,黑龙江大庆163458
出 处:《吉林大学学报(理学版)》2021年第5期1219-1227,共9页Journal of Jilin University:Science Edition
基 金:国家重大科技专项基金(批准号:2017ZX05019-005);黑龙江省自然科学基金(批准号:LH2019F004).
摘 要:针对非连续、非平稳语音信号中含有噪声的问题,提出一种基于参数优化的变分模态分解去噪算法.首先,利用灰狼优化算法搜寻变分模态分解算法的最优分解参数组合分解模态数K和惩罚因子α,通过使用获得的参数组合分解语音信号以获得K个特征模态函数分量IMF;其次,利用相关系数选择有效模态分量,并用小波阈值处理无效模态分量;最后,重构小波阈值处理后的模态分量和有效模态分量以对语音信号进行去噪.实验结果表明,该算法与其他经典算法相比能有效提升信噪比,降低均方误差,提高语音信号的质量.Aiming at the problem of noise in non-continuous and non-stationary speech signals,we proposed a variational mode decomposition(VMD)denoising algorithm based on parameter optimization.Firstly,the grey wolf optimization algorithm was used to search the optimal decomposition parameter combination of the VMD algorithm:decomposition mode number K and penalty factorα.By using the combination of the obtained parameter combination to decompose the speech signal,K characteristic mode function components IMF were obtained.Secondly,the effective modal components were selected by the correlation coefficient,and the invalid modal components were processed by the wavelet threshold.Finally,the wavelet threshold processed modal component and effective modal component were reconstructed to denoise the speech signal.Experimental results show that compared with other classical algorithms,the proposed algorithm can effectively improve the signal-to-noise ratio(SNR),reduce the mean square error,and improve the quality of speech signals.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62