基于小波变换和季节性Holt-Winters模型的短期负荷预测方法  被引量:6

A short-term load prediction method based on the wavelet transform and seasonal Holt-Winters model

在线阅读下载全文

作  者:杨首晖 陈传彬 王雪晶 李庆伟 吴元林 陈静 YANG Shouhui;CHEN Chuanbin;WANG Xuejing;LI Qingwei;WU Yuanlin;CHEN Jing(Fujian Electric Power Trading Center Co.,Ltd.,Fuzhou 350003,China;State Grid Info-telecom Great Power Science and Technology Co.,Ltd.,Fuzhou 350003,China;College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China)

机构地区:[1]福建电力交易中心有限公司,福州350003 [2]国网信通亿力科技有限责任公司,福州350003 [3]福州大学电气工程与自动化学院,福州350108

出  处:《电力需求侧管理》2021年第5期70-75,共6页Power Demand Side Management

基  金:福建省高校产学合作项目(2019H600)。

摘  要:精准的负荷预测对售电公司在电力市场中的运行起着十分重要的作用,而企业用户的负荷受多种因素的影响具有不平稳的特性,对此,提出了基于离散小波分解和粒子群优化的季节性Holt⁃Winters模型的短期负荷预测方法。针对原始负荷序列周期性不平稳的特性,利用离散小波变换对原始负荷序列进行分解,并采用季节性Holt⁃Winters模型进行预测,同时借助小波去噪和粒子群算法进一步提高预测模型的准确性。小波去噪在过滤原始数据中潜在的噪声的同时,对数据进行平滑处理,而粒子群算法能让Holt⁃Winters模型在训练过程找到最优参数。采用该模型来预测具有不同变化趋势的日负荷曲线,结果表明所提出的模型具有较高的预测精度,可适用于不同用电类型的用户负荷短期预测。Accurate load forecasting plays a very important role in the operation of power selling companies in the power mar-ket.However,the load of enterprise users is unstable under the in-fluence of various factors.Therefore,a short-term load forecasting method based on the seasonal Holt-Winters model of discrete wave-let decomposition and particle swarm optimization is proposed.In view of the unsteady periodicity of the original load sequence,the discrete wavelet transform is used to decompose the original load sequence,and the seasonal Holt-Winters model is adopted for pre-diction.Meanwhile,wavelet denoising and particle swarm optimiza-tion algorithm are used to further improve the accuracy of the pre-diction model.Wavelet denoising not only eliminates the potential noise in the original data,but also smoothes the data,and particle swarm optimization allows Holt-Winters model to find the optimal parameters during training.The model is used for short-term pre-diction of load data with different variation characteristics,and the experimental results show that the model has good prediction accu-racy and can be applied to short-term load prediction of users with different power consumption types.

关 键 词:短期负荷预测 小波变换 Holt⁃Winters模型 粒子群算法 时间序列 

分 类 号:TM714[电气工程—电力系统及自动化] TM715

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象