检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵博研 王强[1] 王毅[1] 张鹏涛[1] 高建国 ZHAO Boyan;WANG Qiang;WANG Yi;ZHANG Pengtao;GAO Jianguo(Equipment Management and Unmanned Aerial Vehicle Engineering College,Air Force Engineering University,Xi’an 710051,China)
机构地区:[1]空军工程大学装备管理与无人机工程学院,西安710051
出 处:《空军工程大学学报(自然科学版)》2021年第4期55-62,共8页Journal of Air Force Engineering University(Natural Science Edition)
摘 要:为实现航空玻璃纤维复合材料内部分层缺陷的智能识别,搭建了一种多自由度光纤耦合式太赫兹时域光谱系统,对带有模拟内部分层缺陷的样件进行检测,对检测结果图像进行了数据筛选、数据增强和数据标注,构建目标检测所用数据集。同时,提出了一种改进的YOLOv4算法,提高了缺陷智能识别的精度。实验结果表明,改进的YOLOv4算法在测试集得到91.05%的准确率和92.02%的召回率,分别较原YOLOv4算法提高了5.73%和8.51%,具有更强的特征提取能力,并展现出良好鲁棒性,明显消除了应用原YOLOv4算法的错检、漏检现象。In order to realize the intelligent identification of internal lamination defects of aviation glass fiber composites,a spectroscopy system with multi-degree of freedom fiber coupling terahertz time domain is built.The samples with simulated internal lamination defects are detected,and the detection results are filtered,enhanced and marked,and the data sets for target detection are constructed.At the same time,a modified YOLOv4 algorithm is proposed to improve the accuracy of intelligent defect recognition.The experimental results show that the improved YOLOv4 algorithm achieves 91.05%accuracy and 92.02%recall rate in the test set,which is 5.73%and 8.51%higher than the original YOLOv4 algorithm,respectively.This algorithm is characterized by a stronger feature extraction capability and good robustness,and obviously eliminates the error detection and omissions of the original YOLOv4 algorithm.
关 键 词:玻璃纤维复合材料 太赫兹时域光谱 目标检测 K-MEANS算法 YOLOv4算法
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15