Pandemic Policymaking  被引量:2

在线阅读下载全文

作  者:Philip D.Waggoner 

机构地区:[1]niversity of Chicago,Chicago,IL 60637,USA,and also with Columbia University,New York,NY 10027,USA.

出  处:《Journal of Social Computing》2021年第1期14-26,共13页社会计算(英文)

摘  要:This study leverages a high dimensional manifold learning design to explore the latent structure of the pandemic policymaking space only based on bill-level characteristics of pandemic-focused bills from 1973 to 2020.Results indicate the COVID-19 era of policymaking maps extremely closely onto prior periods of related policymaking.This suggests that there is striking uniformity in Congressional policymaking related to these types of large-scale crises over time,despite currently operating in a unique era of hyperpolarization,division,and ineffective governance.

关 键 词:manifold learning computational social science CONGRESS POLICYMAKING COVID-19 

分 类 号:G51[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象