检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭云开[1,2] 张思爱 谢晓峰 谢琼 GUO Yun-kai;ZHANG Si-ai;XIE Xiao-feng;XIE Qiong(School of Traffic and Transportation Engineering,Changsha University of Science and Technology,Changsha 410076,China;Institute of Surveying and Mapping Remote Sensing Applied Technology,Changsha University of Science and Technology,Changsha 410076,China;Department of Surveying and Mapping Geography,Hunan vocational college engineering,Changsha 410151,China;Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning,Changsha University of Science and Technology,Changsha 410114,China)
机构地区:[1]长沙理工大学交通运输工程学院,湖南长沙410076 [2]长沙理工大学测绘遥感应用技术研究所,湖南长沙410076 [3]湖南工程职业技术学院测绘地理学院,湖南长沙410151 [4]长沙理工大学公路地质灾变预警空间信息技术湖南省工程实验室,湖南长沙410114
出 处:《土壤通报》2021年第4期968-974,共7页Chinese Journal of Soil Science
基 金:国家自然科学基金项目(41471421,41671498);长沙理工大学公路地质灾变预警空间信息技术湖南省工程实验室开放基金项目(kfj190603)资助。
摘 要:为提高耕地土壤重金属含量高光谱反演模型精度,以岳阳县某地区耕地土壤重金属铁(Fe)、砷(As)、铬(Cr)为例,提出了一种遗传算法(GA)优化支持向量机(SVM)的重金属含量反演模型。在对光谱进行SG平滑和10 nm重采样后,利用一阶/二阶微分、倒数对数和连续统去除光谱变换方法增强光谱特征,通过相关性分析筛选最优变换光谱,使用皮尔森相关系数与主成分分析提取各重金属光谱特征变量,分别建立SVM和GA-SVM土壤重金属高光谱反演模型并进行精度验证。结果表明,二阶微分变换光谱与各重金属含量相关性整体最突出;三种重金属在可见光波段490 nm、500 nm、510 nm和530 nm具有共同敏感特征;经GA算法优化SVM参数后,对比SVM回归模型,预测精度有明显提高,其重金属Fe、As和Cr的验证集R2分别为0.968、0.821和0.976;研究结果可为应用遥感技术反演耕地土壤重金属含量提供新的参考。In order to improve the accuracy of hyperspectral inversion model for heavy metal content in cultivated soil,a genetic algorithm(GA)optimized support vector machine(SVM)was proposed to retrieve the heavy metal content of cultivated soil in a certain area of Yueyang County.After SG smoothing and 10 nm resampling,the first-order/second-order differential,reciprocal logarithm and continuum removal spectral transformation methods were used to enhance the spectral characteristics.The optimal transform spectra were selected by correlation analysis.Pearson correlation coefficient and principal component analysis were used to extract the spectral characteristic variables of heavy metals.SVM and GA-SVM were used to establish soil heavy metal hyperspectral inversion models and their accuracies were verified.The results showed that the correlation between the second-order differential transform spectra and the contents of heavy metals was the most prominent.The visible light bands of 490 nm,500 nm,510 nm and 530 nm were the most prominent compared with the SVM regression model.The prediction accuracy was significantly improved,and the verification set R2 values of Fe,As and Cr were 0.968,0.821 and 0.976,respectively.The research results could provide a new reference for the application of remote sensing technology to retrieve the content of heavy metals in cultivated soil.
关 键 词:土壤重金属 高光谱遥感 光谱变换 遗传算法 支持向量机
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249