检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱超斌 张猛 郎利辉[3] 郭庆磊 江培成 李奎 陈林 QIU Chao-bin;ZHANG Meng;LANG Li-hui;GUO Qing-lei;JIANG Pei-cheng;LI Kui;CHEN Lin(AVIC Xi'an Aircraft Industry Group Company Ltd.,Xi'an 710089,China;School of Energy and Power Engineering,Beihang University,Beijing 100191,China;School of Mechanical Engineering and Automation,Beihang University,Beijing 100191,China;Tianjin Tianduan Aviation Technology Co.,Ltd.,Tianjin 300232,China)
机构地区:[1]航空工业西安飞机工业(集团)有限责任公司,西安710089 [2]北京航空航天大学能源与动力工程学院,北京100191 [3]北京航空航天大学机械工程及自动化学院,北京100191 [4]天津天锻航空科技有限公司,天津300232
出 处:《精密成形工程》2021年第5期173-179,共7页Journal of Netshape Forming Engineering
基 金:国家自然科学基金(51675029);四川省院校合作项目(2019YFSY0034)。
摘 要:目的解决冲压成形中工艺参数优化难的问题。方法以一种深腔型零件的冲压成形为例。首先,借助灰度关联分析法对有限元中的工艺参数进行分析,获取该零件冲压成形中影响成形质量的2个主要因素——冲压速度和压边力。其次,借助拉丁超立方抽样法对上述2个因素进行随机取样,并借助DYNAFORM软件对其进行逐一模拟。再次,将冲压速度和压边力作为输入,最大减薄作为输出,训练在MATLAB中建立的BP神经网络,并借助遗传算法对其进行寻优。结果最优成形压边力为1.372 MN,最优加载速度为1.5366 m/s。结论与神经网络遗传算法预测相比,有限元结果的相对误差小于2%,零件试制结果的相对误差小于6%,该方法有较高的预测精度。In order to solve the problem of difficult optimization of process parameters in stamping forming.this paper takes the stamping forming of a deep cavity part as an example.Firstly,the process parameters in the finite element were analyzed by gray correlation analysis,and the two main factors affecting the forming quality,namely stamping speed and blank holder force,are obtained.Secondly,above two main factors were sampled randomly by Latin hypercube sampling method and simulated one by one with the help of DYNAFORM software.After that,the stamping speed and the blank holder force were used as the input data and the maximum thinning rate as output data to train the BP neural network established in MATLAB and optimize it with the help of genetic algorithm.The optimal blank holder force was 1.372 MN and the optimal loading speed is 1.5366 m/s.Compared with the prediction of neural network genetic algorithm,the relative error of finite element results is less than 2%,and the relative error of parts trial production results is less than 6%,which means that this method has higher prediction accuracy.
关 键 词:冲压成形 参数优化 灰度关联分析 神经网络 遗传算法
分 类 号:TG306[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7