基于遗传算法的并混联机床电机伺服控制参数整定  被引量:13

Motor servo control parameter tuning for parallel and hybrid machine tools based on a genetic algorithm

在线阅读下载全文

作  者:王立平[1] 孔祥昱 于广[1] WANG Liping;KONG Xiangyu;YU Guang(State Key Laboratory of Tribology,Department of Mechanical Engineering,Tsinghua Vniversity,Beijing 100084,China)

机构地区:[1]清华大学机械工程系摩擦学国家重点实验室,北京100084

出  处:《清华大学学报(自然科学版)》2021年第10期1106-1114,共9页Journal of Tsinghua University(Science and Technology)

基  金:国家自然科学基金资助项目(51975319,51905302)。

摘  要:驱动电机伺服控制对机床加工效率、加工质量都有影响。伺服电机控制方法中应用最广泛的是比例积分微分(PID)控制,其控制效果与控制参数直接相关,而以往由工程师凭经验进行参数整定,费时费力。该文提出一种基于遗传算法的伺服控制参数整定方法。建立了理论模型,并综合多种条件进行了修正。针对并混联机床的特点提出包含报警指标、择优指标2类指标的适应度函数,得到遗传算法整定的伺服控制参数,并在五轴混联机床上进行了实验。实验结果显示:优化参数下,伺服电机跟随性能优于人工整定参数,进而验证了所提出的基于遗传算法的参数整定方法可以得到更好的性能且省时省力。The motor servo control of machine tools influences the processing efficiency and processing quality of the machine tool. Most servo motor controllers use the proportional integral derivative(PID) control which depends on accurate determination of the control parameters. However, accurate determination of the control parameters requires much time, effort and experience with manual tuning usually required to provide the desired accuracy. This paper presents a method for tuning servo control parameters based on a genetic algorithm. A theoretical model is developed and refined based on the machine tool conditions. The fitness function is developed based on the parallel and hybrid machine tool characteristics with alarm indexes and optimal indexes. The servo control parameters given by the genetic algorithm are then tested on a 5-axis hybrid machine tool. The results show that the optimized parameters give better servo motor following accuracy than the engineer’s parameters.Thus, this parameter tuning method based on a genetic algorithm saves time and effort while giving more accurate servo control parameters.

关 键 词:伺服电机 比例积分微分(PID)参数整定 遗传算法 并联机床 

分 类 号:TP27[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象