检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高昂 唐世浩[1] 肖萌[1] 郑伟[1] GAO Ang;TANG Shihao;XIAO Meng;ZHENG Wei(National Satellite Meteorological Center,Beijing 100081,China)
机构地区:[1]国家卫星气象中心,北京100081
出 处:《科技导报》2021年第15期67-74,共8页Science & Technology Review
基 金:国家重点研发计划重点专项(2018YFC1506500)。
摘 要:概述了机器学习的主要方法及其在遥感影像的主要应用方向,涵盖环境生态遥感中机器学习技术的研究、应用情况及近年来的新进展。通过使用深度学习对FY-3C气象卫星资料进行积雪检测的应用实例,说明深度学习模型可以利用大数据的优势不断提高检测精度,在某些指标中取得了更优于传统机器学习的精度,可解决传统机器学习难以解决的一些问题,从而带动遥感应用模式的创新。This paper summarizes the main methods of machine learning and its main application direction in remote sensing image. It covers the research and application of machine learning technology in environmental ecological remote sensing, and the new progress in recent years. Through the application of deep learning to snow detection of FY-3C meteorological satellite data,it is shown that the deep learning model can improve the detection accuracy by means of big data advantages, and has achieved better precision than traditional machine learning in some indexes, thus solving some problems that are difficult to solve using traditional machine learning method, and driving the innovation of remote sensing application mode.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3