检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王传旭 王康 陈林 李学 张红伟 WANG Chuanxu;WANG Kang;CHEN Lin;LI Xue;ZHANG Hongwei(Key Laboratory of Computational Intelligence and Signal Processing,Ministry of Education/School of Electronic and Information Engineering,Anhui University,Hefei 230039,China)
机构地区:[1]安徽大学电子信息工程学院,计算智能与信号处理教育部重点实验室,合肥230039
出 处:《中国农业科技导报》2021年第9期96-102,共7页Journal of Agricultural Science and Technology
基 金:安徽省科技重大专项项目(180307011488);安徽省高校协同创新项目(GXXT-2019-020)。
摘 要:针对复杂仓储环境中粮情温度单点预测效果不理想、现有温度场建模难以满足工程应用需求等问题,基于温度场理论,结合分布式测温系统结构,提出了基于粮堆温度数据的温度场预测模型。该模型基于BP神经网络,利用粮仓内离散测温点数据预测对应点的未来温度数据;再采用Kriging插值法进行空间插值,利用已知位置的温度值估计出未知点的温度值,进而建立温度场的预测模型。仿真测试结果表明,温度预测的平均绝对百分误差为1.2535%,均方根误差为0.1060,预测效果良好。采用Kriging插值法进行温度点的插值,其平均绝对百分误差为9.4700%,均方根误差为0.8651。对比于传统的粮堆温度单点预测算法,该模型能够更好地反映粮仓内温度场变化趋势以及温度分布的情况,为粮仓管理者提供更好的数据支持,实现辅助决策。该模型可扩展性强,能够适用于各种仓储现场。Aiming at the problems of unsatisfactory single-point prediction of grain temperature in a complex storage environment,and difficulty in meeting the needs of engineering applications in current temperature field modeling,based on the temperature field theory,and combined with the distributed temperature measurement system structure,this paper proposed a temperature field prediction model based on grain pile temperature data.The model was on the basis of BP neural network,used discrete temperature measurement points in the granary to predict the future temperature data of the corresponding points,and then used Kriging interpolation method for spatial interpolation,and used the temperature of the known location to estimate the temperature of the unknown point,and then establish predictive model of temperature field.The simulation results showed that the average absolute percentage error of temperature prediction was 1.2535%,and the root mean square error was 0.1060.The prediction effect was good.When using Kriging interpolation method to interpolate temperature points,the average absolute percentage error was 9.4700%,and the root mean square error was 0.8651.Compared with the traditional single-point prediction algorithm for grain pile temperature,this model could better reflect the changing trend and temperature distribution of the temperature field in the granary,provide better data support for the granary manager,and realize auxiliary decision-making.The model was highly scalable and could be applied to various storage sites.
关 键 词:粮食温度 BP神经网络 Kriging插值法 温度场预测
分 类 号:S126[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33