检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:盛明强[1] 刘梓轩 张晓晴 胡松雁 郭子正[2] 黄发明 SHENG Ming-qiang;LIU Zi-xuan;ZHANG Xiao-qing;HU Song-yan;GUO Zi-zheng;HUANG Fa-ming(School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China;Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)
机构地区:[1]南昌大学建筑工程学院,南昌330031 [2]中国地质大学工程学院,武汉430074
出 处:《科学技术与工程》2021年第25期10620-10628,共9页Science Technology and Engineering
基 金:国家自然科学基金(41807285,52069013);江西省自然科学基金(20192BAB216034);中国博士后科学基金面上项目(2019M652287,2020T130274)。
摘 要:区域滑坡易发性制图对滑坡灾害的防治非常有意义。以江西省上犹县滑坡为例,首先基于遥感(remote sensing,RS)和地理信息系统(geographic information system,GIS)平台获取11个滑坡评价因子;进一步利用频率比(frequency ratio,FR)联接方法和支持向量机(support vector machine,SVM)模型耦合出FR-SVM模型进行滑坡易发性预测,并对结果进行易发性分级;同时建立以原始评价因子作为模型输入变量的单独SVM模型,再次对上犹县进行滑坡易发性预测制图;最后通过受试者特征工作曲线下的面积(area under receiver operating characteristic curve,AUC)曲线开展FR-SVM和单独SVM建模工况下的精度验证分析。结果表明:FR-SVM模型对于区域滑坡易发性制图具有比单独SVM模型更好的预测性能。FR-SVM和单独SVM模型的AUC值分别为0.893和0.798,进一步表明FR-SVM模型在描述滑坡易发性指数分布及评价因子对滑坡发育影响特征方面要优于单独SVM模型。Landslide susceptibility prediction is a meaningful method for landslides spatial prediction.The Shangyou County,Jiangxi Province of China was selected as a case study.Firstly,11 landslide evaluation factors based on remote sensing(RS)and geographic information system(GIS)platform were obtained.Furthermore,the frequency ratio method and support vector machine(SVM)model were coupled as FR-SVM model to predict the landslide susceptibility.Meanwhile,the single SVM model with original evaluation factors used for inputs was used to evaluate the landslide susceptibility again.Finally,through receiver operation characteristics(ROC)curve,the accuracy of the evaluation results of the FR-SVM and single SVM models were tested and compared.The results show that the FR-SVM model is more specific to the landslide susceptibility in Shangyou County.The area under receiver operating characteristic curve(AUC)values of the FR-SVM and single SVM models are 0.893 and 0.798,respectively,which indicates that the FR-SVM model is better than that of the single SVM in describing the distribution of landslide susceptibility indexes and the evolution rules of landslide disasters in Shangyou area.
关 键 词:滑坡易发性 频率比 支持向量机 遥感 地理信息系统
分 类 号:P642[天文地球—工程地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3