检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋大创 马晓旦[1] 夏晓梅[1] 孙明洁[1] SONG Dachuang;MA Xiaodan;XIA Xiaomei;SUN Mingjie(School of Management,University of Shanghai for Science and Technology,Shanghai 200093,China)
出 处:《智能计算机与应用》2021年第8期151-153,157,共4页Intelligent Computer and Applications
摘 要:在短时交通流预测中,道路交通空间相关性是客观存在的。现有研究在度量道路交通空间相关性上,通常采用时间序列数据直接进行统计分析,或是假定一定距离内具有空间相关性等。但这些方式忽略了道路之间交通影响的空间异质性。在卡口数据中,由于车辆牌照的唯一性特性,不仅可以计算出研究路段的交通流时间序列,还能得到每辆车的行驶轨迹。本文通过车辆轨迹,得到流量转移权重矩阵和不同卡口数据量化的网络权重矩阵,构造一个新的网络权重矩阵,度量城市道路之间的空间相关性,然后进行短时交通流预测及效果比较,验证了方法的可行性和有效性。In short-term traffic flow forecasting,the spatial correlation of road traffic exists objectively.Existing studies usually use time series data for direct statistical spatial correlation within a certain distance.However,these methods ignore the spatial heterogeneity of traffic impacts between roads.In the bayonet data,due to the unique characteristic of the vehicle license plate,not only the time series of the traffic flow of the research section can be calculated,but the trajectory of each vehicle can also be obtained.this paper combines the traffic transfer weight matrix obtained by vehicle trajectory and the network weight matrix quantified by different bayonet data to construct a new network weight matrix to measure the spatial correlation between urban roads.And then carry out short-term traffic flow forecasting and effect comparison,verifying the feasibility and effectiveness of the method.
分 类 号:P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222