检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚琦海 汪勇[1] 黎佳艺 杨益新[1] YAO Qihai;WANG Yong;LI Jiayi;YANG Yixin(School of Marine Science and Technology,Northwestern Polytechnical University,Xi’an 710072,China)
出 处:《应用声学》2021年第5期723-730,共8页Journal of Applied Acoustics
基 金:国家自然科学基金项目(61971353)。
摘 要:以声压场采样协方差矩阵为特征,基于广义回归神经网络研究在强干扰下的水下声源测距问题,该文提出了优化扩展因子的方法以提高神经网络估计性能。使用仅有一个网络参数的广义回归神经网络,使用SWellEX-96实验S59航次的垂直阵数据,比较了以传统匹配场处理为代表的模型驱动方法和以卷积神经网络、广义回归神经网络为代表的数据驱动方法在强干扰下的水下目标距离估计性能。结果表明,基于优化扩展因子的广义回归神经网络在强干扰下可以有效实现距离估计。The sample covariance matrix of sound pressure field is made as the feature. The research on underwater sound source ranging under strong interference based on generalized regression neural network(GRNN), which has only one network parameter, extension factor. It proposes a method of optimizing the extension factor to improve the estimation performance of neural network. The research uses the vector line array(VLA) data from event S59 of the SWellEx-96 experiment, comparing the range estimation performance of underwater targets under strong interference of model-driven traditional matched field processing, datadriven convolutional neural networks(CNN) and GRNN. The results show that GRNN based on the optimized extension factor can effectively realize the estimation of range under strong interference.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4