检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹柯 张久权 伍建林[2] 巴文娟 林琳[2] 沈晶[2] 熊婧彤 张伟杰 YIN Ke;ZHANG Jiuquan;WU Jianlin;BA Wenjuan;LIN Lin;SHEN Jing;XIONG Jingtong;ZHANG Weijie(Department of Radiology,Chongqing University Cancer Hospital,Chongqing 400030,China;Department of Radiology,Affiliated Zhongshan Hospital of Dalian University,Dalian 116001,China;Department of Radiology,Affiliated Hospital of Yangzhou University,Yangzhou 225003,China;Department of Radiology,the Second Hospital of Dalian Medical University,Dalian 116023,China;Shaanxi Weinan Shenzhou Dexin Medical Imaging Technology Co.,Ltd.,Weinan 714099,China)
机构地区:[1]重庆大学附属肿瘤医院影像科,重庆400030 [2]大连大学附属中山医院放射科,辽宁大连116001 [3]扬州大学附属医院放射科,江苏扬州225003 [4]大连医科大学附属第二医院放射科,辽宁大连116023 [5]陕西渭南神州德信医学成像技术有限公司,陕西渭南714099
出 处:《中国医学影像技术》2021年第9期1338-1342,共5页Chinese Journal of Medical Imaging Technology
基 金:重庆市科卫联合医学科研项目(2019ZDXM007)。
摘 要:目的比较基于胸部CT建立的卷积神经网络(CNN)分类模型与放射科主治医师分类磨玻璃结节(GGN)中的浸润前病变(PIL)与浸润性腺癌(IA)的效能。方法回顾性分析1086例经病理确诊PIL或IA患者的胸部CT,共1214枚GGN,按9∶1比例将其分为训练组(n=1092)及验证组(n=122)。对训练组数据进行各向同性预处理和3D图像块随机采样和填充,建立CNN分类模型,将训练组GGN分类为PIL或IA,并于验证组进行验证。由2名放射科主治医师(医师1和2)对验证组GGN进行分类,鉴别PIL与IA。采用受试者工作特征(ROC)曲线比较CNN分类模型与2名放射科主治医师对验证组进行分类的效能。结果ROC曲线显示,CNN分类模型、医师1及2鉴别PIL与IA的曲线下面积(AUC)分别为0.866、0.742及0.769;CNN分类模型诊断敏感度(84.81%)显著高于医师1(67.09%,χ^(2)=11.352,P<0.001)、2(74.68%,χ^(2)=18.473,P<0.001),而特异度与医师1、2差异均无统计学意义(P均>0.05)。结论CNN分类模型鉴别GGN中的PIL与IA的效能优于放射科医师。Objective To compare the diagnostic efficiency of convolutional neural network(CNN)classification model based on chest CT and attending physicians of radiology in distinguishing pre-invasive lesions(PIL)and invasive adenocarcinoma(IA)manifested as lung ground glass nodule(GGN).Methods Chest CT of 1086 patients with 1214 pathologically confirmed PIL or IA were retrospectively analyzed.GGN were divided into training group(n=1092)and verification group(n=122)at the ratio of 9∶1.Isotropic preprocessing of the training data and random sampling and filling of 3D image blocks were performed,so as to establish CNN classification model to identify PIL and IA in GGN and verify using verification group.The verification group was classified by 2 radiologists(physician 1 and 2)to identify PIL or IA manifested as lung GGN.Receiver operating characteristic(ROC)curve was used to compare the efficacy of CNN classification model and 2 radiologists in classifying the verification group.Results ROC curve showed that the area under the curve(AUC)of CNN classification model and physician 1 and 2 was 0.866,0.742 and 0.769,respectively.The diagnostic sensitivity of CNN classification model was 84.81%,significantly higher than that of physician 1(67.09%,χ^(2)=11.352,P<0.001)and physician 2(74.68%,χ^(2)=18.473,P<0.001),while the specificity was not statistically different between physician 1 and 2(both P>0.05).Conclusion The efficacy of CNN classification model for classifying PIL and IA manifested as lung GGN was higher than that of attending physicians of radiology.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145