检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李晓辉[1] 赵璞 于振宁 刘传水 赵毅 LI Xiao-Hui;ZHAO Pu;YU Zhen-Ning;LIU Chuan-Shui;ZHAO Yi(School of Electronics and Control Engineering,Chang’an University,Xi’an 710064,China;North China Petroleum Steel Pipe Co.Ltd.,CNPC Bohai Equipment Manufacturing Co.Ltd.,Cangzhou 062658,China)
机构地区:[1]长安大学电子与控制工程学院,西安710064 [2]渤海装备华油钢管有限公司,沧州062658
出 处:《计算机系统应用》2021年第9期226-231,共6页Computer Systems & Applications
基 金:工信部国家物联网重点研发项目(2019ZDLGY03-01);陕西省重点产业链项目(201805045YD23CG29)。
摘 要:石油运输管道是采用钢板焊接而成的,在它的内壁表面可能会存在划痕、内断、凹坑等问题,如果不能及时发现其内表面的异常则会生产出大量的不合格品,给企业带来损失.本文设计了一种基于图像显著性的钢管内表面异常检测方法.该方法先获取图像利用离散余弦变化后的信息,然后再将其与图像的相位谱进行融合得到最终的显著图,最后通过连通区域检测将检测结果映射到原图上.实验结果表明,相对其他检测方法,该方法的检测效果更优,准确率更高,具有较好的稳定性和实用性.Pipelines are welded by steel plates and their inner surfaces may have scratches,internal fractures,pits,and other problems.If the abnormality on the inner surfaces cannot be found in time,a large number of unqualified products will be produced and the enterprises will have losses.This study designs a method for detecting anomalies on the inner surfaces of steel pipes based on image saliency.First,the image information after discrete cosine transform is collected and then fused with the phase spectrum of the image to obtain the final saliency map.Finally,the detection results are mapped to the original image through the connected region detection.Experimental results show that this method has a more remarkable detection effect,higher accuracy,and better stability and practicability than its counter parts.
关 键 词:显著性检测 离散余弦变化 相位谱 钢管内表面 缺陷检测
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TE973.6[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.114