检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何峰[1,2] 钟婷 谭貌[1] HE Feng;ZHONG Ting;TAN Mao(Engineering Center of Multi-energy Coordination Control Technology,Xiangtan University,Xiangtan,Hunan 411105,China;Valin Xiangtan Iron and Steel Co.,Ltd,Department of Energy and Environment Protection,Xiangtan,Hunan 411101,China)
机构地区:[1]湘潭大学多能协同控制技术湖南省工程中心,湖南湘潭411105 [2]华菱湘潭钢铁有限公司能源环保部,湖南湘潭411101
出 处:《计算技术与自动化》2021年第3期72-77,共6页Computing Technology and Automation
基 金:湖南省科技重点研发计划资助项目(2017GK2244)。
摘 要:电力大用户最大需量控制是降低电网峰值负荷、节约用户电费成本的重要技术手段。面向强波动性和冲击性工业电能需量控制,研究了超短期需量负荷的多步预测问题。基于集成经验模态分解(EEMD)方法,通过二次分解有效分离时间序列中不同频率的信号,采用长短期记忆网络(LSTM)对各信号子序列进行独立预测,最后组合预测结果。实验结果表明,本方法能很好的预测工业需量负荷变化,MAPE/MAE/NRMSE精度指标基本控制在2%以内,明显优于多种现行主流时序预测模型和最新文献方法,且消除了多步预测的传递误差,预测模型精度和稳定性满足需量控制要求。The maximum demand control of large power users is an important technical means to reduce the peak load of power grid and save the cost of power users.Aiming to control the industrial power demand characterized by strong fluctuation and impact,this paper studies the multi-step forecasting problem of ultra-short term demand load.Based on the integrated empirical mode decomposition method,the signals with different frequencies are effectively separated by twice decomposition.Then,the long short memory neural network is used to independently predict different signal subsequences,and finally the subsequence prediction results are combined.The experimental results show that the proposed method can well predict the industrial demand load,and the indices of prediction accuracy,such as MAPE,MAE,and NRMSE,are all controlled within 2%,and are significantly better than several classical time series prediction model,as well as the latest literature algorithms.The transfer error is also eliminated in the method,which represents good prediction accuracy and stability to meet the demand of demand control.
分 类 号:TP274.2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145