基于机器视觉的Baxter机器人抓取算法研究  被引量:8

Research on Baxter Robot Grasping Algorithm Based on Machine Vision

在线阅读下载全文

作  者:饶期捷 黄海松[1] 张松松 RAO Qi-jie;HUANG Hai-song;ZHANG Song-song(Key Laboratory of Advanced Manufacturing Technology of Ministry of Education,Guizhou University,Guiyang 550025,China)

机构地区:[1]贵州大学现代制造技术教育部重点实验室,贵阳550025

出  处:《组合机床与自动化加工技术》2021年第9期1-5,共5页Modular Machine Tool & Automatic Manufacturing Technique

基  金:国家国防科技工业局项目(JCKY2018204B025);贵州省科技计划项目(黔科合支撑[2021]一般445、397);贵州省拔尖人才项目(黔教合KY[2018]037);贵州省科技支撑计划(黔科合支撑[2019]2010号)。

摘  要:针对传统机器人结构化示教抓取无法满足智能制造生产过程中实际抓取需求的问题,对机器人在非结构化场景下的多目标灵活抓取进行了研究,在分析了传统机器人抓取检测方法的基础上以智能协作式机器人Baxter作为操作对象,融合机器视觉技术提出了一种基于改进的Canny边缘检测和Hough变换的机器人抓取检测分类算法,并最终实现了机器人的目标抓取。通过实验证明,该算法能够有效提升Baxter机器人在完成抓取任务过程中的精准性和鲁棒性,该研究对智能制造环境下的机器人灵活抓取任务实现有着重要的案例参考意义。Aiming at the problem that the traditional robot structured teaching grasping cannot meet the actual grasping requirements in the intelligent manufacturing production process,the robot’s multi-target flexible grasping in unstructured scenes is studied,and the traditional robot grasping detection method is analyzed.On the basis of this,the intelligent collaborative robot Baxter is used as the operating object,and machine vision technology is combined to propose a robot grasping detection classification algorithm based on improved Canny edge detection and Hough transform,and finally achieves the robot’s target grasping.Experiments have shown that the algorithm can effectively improve the accuracy and robustness of Baxter robots in the process of completing grasping tasks.The research in this article has important case reference significance for the realization of flexible robot grasping tasks in intelligent manufacturing environments.

关 键 词:Baxter机器人 机器视觉 抓取 抓取检测 

分 类 号:TH165[机械工程—机械制造及自动化] TG659[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象