检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石祖智 常峻 吴斌平[1] 佟大威[1] 郭辉[1] 乔天诚 SHI Zuzhi;CHANG Jun;WU Binping;TONG Dawei;GUO Hui;QIAO Tiancheng(State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300350,China;China Water Resources Beifang Investigation Design&Research Co.,Ltd.,Tianjin 300222,China)
机构地区:[1]天津大学水利工程仿真与安全国家重点实验室,天津300350 [2]中水北方勘测设计研究有限责任公司,天津300222
出 处:《水利水电技术(中英文)》2021年第9期57-66,共10页Water Resources and Hydropower Engineering
基 金:国家重点研发计划(2018YFC0406704);国家自然科学基金(51839007);天津市自然科学基金(19JCQNJC06800)。
摘 要:注浆量是反映灌浆施工质量的重要指标之一。目前基于机器学习的注浆量预测方法缺乏对裂隙倾向、倾角等参数的全面考虑。裂隙灌浆模拟具有能够综合考虑地质、设计、施工等因素影响的优势,然而面临裂隙参数小样本、计算效率低下的不足。针对上述问题,提出基于改进混合核极限学习机(ICSO-MKELM)的注浆量预测代理模型。主要包括:(1)提出基于改进bootstrap方法的三维随机裂隙网络模型建模方法,解决裂隙数据小样本问题,并结合离散元方法开展灌浆数值模拟研究;(2)建立基于改进混合核极限学习机的注浆量预测代理模型,采用改进的鸡群算法优化混合核极限学习机的参数选择,克服混合核极限学习机参数选择效率不高、且难以有效选择全局最优参数的不足。通过将建立的代理模型应用于某工程坝基帷幕灌浆的注浆量预测,并与基于RBF-KELM单核极限学习机模型、Poly-KELM单核极限学习机模型、BP神经网络模型的注浆量预测结果对比,验证了本文所提方法的优越性。Grouting volume is one of the important indicators reflecting the quality of grouting construction.The current grouting volume prediction method based on machine learning lacks a comprehensive consideration of fracture dip angel,fracture dip direction and other parameters.Grouting numerical simulation has the advantage of comprehensively considering the influence of geology,design,construction and other factors.However,it still faces the lack of fracture parameter samples and low calculation efficiency.In response to the above problems,a surrogate model for grouting volume prediction based on the improved multiple kernel extreme learning machine(ICSO-MKELM)is proposed,which mainly includes:(1)A three-dimensional stochastic fracture network modeling method based on the improved bootstrap method is proposed to solve the problem of small samples of fracture data.And based on the established stochastic fracture network model,numerical simulation of fracture grouting using the three-dimensional discrete element method is proceeded.(2)A surrogate model of grouting volume prediction based on the improved multiple kernel extreme learning machine is established.The improved chicken swarm optimization is used to optimize the parameter selection of the multiple kernel extreme learning machine,which overcomes the inefficiency of parameter selection,and improves the efficiency of the global optimal parameter selection.At last,the proposed surrogate model is applied to predict the grouting volume of a dam foundation curtain grouting construction.Compared with the prediction results of grouting volume based on RBF-KELM single-core extreme learning machine model,Poly-KELM single-core extreme learning machine model,and BP neural network model,the superiority of the proposed method is proved.
关 键 词:注浆量预测 代理模型 改进bootstrap方法 三维随机裂隙网络 离散元数值模拟 混合核极限学习机 改进的鸡群算法
分 类 号:TV52[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.202