检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈靖宇 汤德佑[1] 伍光胜 胡鹏 CHEN Jingyu;TANG Deyou;WU Guangsheng;HU Peng(South China University of Technology,Guangzhou 510006,China;Guangzhou Emergency Warning Information Release Center,Guangzhou 511430,China)
机构地区:[1]华南理工大学,广东广州510006 [2]广州市突发事件预警信息发布中心,广东广州511430
出 处:《热带气象学报》2021年第3期450-456,共7页Journal of Tropical Meteorology
基 金:广州市科技计划项目(201803030014);广东省气象局科学技术研究项目(GRMC2019M28)共同资助。
摘 要:雷电是对人类社会有重大安全影响的自然灾害之一,对雷电进行监测、预警是降低其危害的重要手段。利用广州市黄埔区的大气电场仪资料和闪电定位资料统计分析了反映雷电趋势的相关特征,并从中提取预警因子探讨与电场仪探测范围内雷电事件的相关性,基于基分类器BP神经网络,分别通过Bagging和Adaboost的方法建立集成模型。试验表明,在以30分钟为时间片的雷电事件预警中,基于BP神经网络模型,对比本试验提取的特征和其他研究提供的特征,误报率和漏报率分别降低了16.83%和15.19%;集成方法比未集成的单一BP神经网络误报率最大降低了11.46%,漏报率最大降低了4.73%,说明了特征提取和集成学习的方法能有效提升模型在雷电预测中的准确率。Lightning is one of the natural disasters that have a major impact on human safety.Monitoring and early warning of lightning are important means to reduce harm.The present study uses the atmospheric electric field data and lightning location data in Huangpu District of Guangzhou to analyze relevant features that reflect the lightning trend,find early warning factors from them,and explore their correlation with lightning events within the electric field detection range.The experiment is based on the base classifier BP neural network,and establishes the ensemble model through Bagging and Adaboost respectively.The experiments show that in the early warning of lightning event with a time window of 30 minutes,the features extracted in this experiment reduce FPR and FNR by 16.83%and 15.19%respectively,compared with the features provided by the current research.Compared with the single BP neural network,the ensemble method reduces FPR by 11.46%and FNR by 4.73%,which shows that the method of feature extraction and ensemble learning can effectively improve the accuracy of the model in lightning prediction.
关 键 词:雷电预测 大气电场 闪电定位 特征提取 集成学习
分 类 号:P427.3[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.34.100