检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李林波[1] 李杨 LI Linbo;LI Yang(Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai 201084,China)
机构地区:[1]同济大学道路与交通工程教育部重点实验室,上海201804
出 处:《同济大学学报(自然科学版)》2021年第9期1301-1306,共6页Journal of Tongji University:Natural Science
基 金:国家社会科学基金项目(207BGL291)。
摘 要:停车诱导系统(PGS)是缓解交通拥堵的有效办法,但停车需求短时精准预测作为空余车位发布的关键技术并没有得到有效解决。利用停车需求时变特征曲线的线型稳定性,以及在周内各工作日间的振幅的显著差异性对数据进行分组,采用不仅具备记忆时间序列数据能力,同时有着更简洁的逻辑门控制结构的GRU(gated recurrent unit)模型对停车需求进行短时精准预测,发现相比于传统神经网络以及ARIMA模型,在考虑停车需求周内日间差异性并对数据进行分组后的GRU模型能提供更高的预测精度。Parking guidance system(GPS) is an effective way to alleviate traffic congestion, but as a key technology for releasing vacant parking spaces,the short-time accurate prediction of parking demand has not been effectively solved. Parking demand data were grouped based on the linear stability of the time-varying characteristic curves and the significant variability of the amplitudes among the working days. GRU(gated recurrent unit) Model was introduced to the accurate short-term prediction of parking demand. The model with a simpler logic gate control structure could memorize the time series data. Study results show that compared with the traditional neural network and ARIMA(autoregressive integrated moving average) Model,the proposed GRU model offers a satisfactory prediction accuracy.
关 键 词:精细化停车管理 停车需求预测 GRU模型 模型比选
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127