检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许子非 金江涛 李春[1,2] XU Zifei;JIN Jiangtao;LI Chun(Energy and Power Engineering Institute,University of Shanghai for Science and Technology,Shanghai 200093 China;Shanghai Key Laboratory of Multiphase Flow and Heat Transfer for Power Engineering,Shanghai 200093 China)
机构地区:[1]上海理工大学能源与动力工程学院,上海200093 [2]上海市动力工程多项流动与传热重点实验室,上海200093
出 处:《振动与冲击》2021年第18期212-220,共9页Journal of Vibration and Shock
基 金:国家自然科学基金(51976131,51676131,51176129,51875361);上海市“科技创新心动计划”地方院校能力建设项目(19060502200)。
摘 要:为提升滚动轴承在大噪声、变载荷及复杂工况下故障诊断的准确率,考虑被采信号具有时间多尺度特性,提出多尺度卷积神经网络(MTSC-CNN),开发一种“端到端”的故障诊断系统。为验证MTSC-CNN方法的有效性,通过实验数据,对11种含故障类型、损伤程度不同以及4种存在故障混合的轴承状态进行识别。结果表明:考虑单一时间尺度提取时,因信息缺失导致模型性能欠佳;过多的时间尺度将产生信息过提取,继而增加模型复杂度,且弱化模型诊断能力。与现有方法相比,MTSC-CNN模型在复杂环境下性能更佳。此外,基于可视化技术,表明由于不同尺度所学习特征存在互补性,而使模型具有较强的鲁棒性。In order to improving the accuracy of rolling bearings fault diagnosis in complex working environments,and considering the multiple time scale characteristic of the measured signals,a new algorithm named multiple time scale characteristic extracted convolutional neural network,(MTSC-CNN)was proposed to develop an end-to-end fault diagnosis system.The proposed MTSC-CNN was used to realize fault identification under 11 working conditions of the tested bearings,including different fault types and damage degrees for verifying the effectiveness of the proposed model.The results show that when only single time scale is considered,the performance of the model is poor due to lack of information.Too larger time scale will lead to over-extraction of information,which will increase the computational time and weaken the diagnostic capability of the model.Compared with the existing methods,the MTSC-CNN model has better performance under variable load and noise conditions.In addition,the results of neural network visualization also show that the features learned at different scales are complementary to improve the robustness of the model.
关 键 词:故障诊断 卷积神经网络(CNN) 轴承 多尺度
分 类 号:TH133[机械工程—机械制造及自动化] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.57