检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘泽萌 熊黎明 熊玮[2] LIU Zemeng;XIONG Liming;XIONG Wei(School of Mathematics and Statistics,Beijing Institute of Technology,Beijing,100081,P.R.China;College of Mathematics and System Science,Xinjiang University,Urumqi,Xinjiang,830046,P.R.China)
机构地区:[1]北京理工大学数学与统计学院,北京100081 [2]新疆大学数学与系统科学学院,乌鲁木齐新疆830046
出 处:《数学进展》2021年第5期793-799,共7页Advances in Mathematics(China)
基 金:Supported by NSFC(Nos.11871099,11671037,12001465)。
摘 要:图G=(V(G),E(G))的线图L(G)是指以G的边集E(G)为顶点集且L(G)的2个顶点相邻当且仅当它们在G中有公共顶点.定义G的最小边度σ_(2)(G)=min{dG(u)+dG(v):uv∈E(G)}.对于连通图G,给出σ_(2)(G)的精确界,使得L(L(G))是哈密尔顿的(即存在支撑圈).对于每一条割边都是悬挂边的连通图H,给出σ_(2)(H)的精确界,使得L(L(H))是哈密尔顿的.The line graph L(G)of G=(V(G),E(G))has E(G)as its vertex set,and two vertices are adjacent in L(G)if and only if the corresponding edges share a common end vertex in G.Let σ_(2)(G)=min{dG(u)+dG(v):uv∈E(G)}.A sharp bound of σ_(2)(G)for a connected graph G such that L(L(G))is Hamiltonian(i.e.,has a spanning cycle)is given.A sharp bound of σ_(2)(H)for a connected graph H in which every cut edge is a pendent edge such that L(L(H))is Hamiltonian is also given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222