检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李龙龙[1] 何东健[2] 王美丽[3] LI Longlong;HE Dongjian;WANG Meili(College of Information Engineering,Shaanxi Polytechnic Institute,Xianyang,Shaanxi 712000,China;College of Mechanical&Electronic Engineering,Northwest A&F University,Yangling,Shaanxi 712100,China;College of Information Engineering,Northwest A&F University,Yangling,Shaanxi 712100,China)
机构地区:[1]陕西工业职业技术学院信息工程学院,陕西咸阳712000 [2]西北农林科技大学机械与电子工程学院,陕西杨凌712100 [3]西北农林科技大学信息工程学院,陕西杨凌712100
出 处:《计算机工程与应用》2021年第19期228-234,共7页Computer Engineering and Applications
基 金:国家高技术研究发展计划(863计划)(2013AA10230402);国家自然科学基金(61402374);陕西省教育厅科学研究计划项目(18JK0062)。
摘 要:为了解决LBP算法抽取的纹理特征仅考虑了邻域像素的特征,忽略关键的局部和全局特征的问题,提出一种基于改进型LBP算法的WCM-LBP植物叶片图像特征提取方法。该算法融合了加权局部均值算法WRM-LBP和加权全局均值算法WOM-LBP,通过提取叶片基于区域的关键几何特征和纹理特征对LBP特征描述符进行加权改造,并采用加权局部均值和加权全局均值代替传统的中心像素点,最后将叶片图像的R、G和B通道颜色分量和灰度值作为特征输入矩阵进行图像分析。该算法结合特征加权的模糊半监督聚类算法(SFFD)应用于经典的Flavia、Swedish、Foliage以及自测图片集等4种植物叶片图像数据集中进行实验。实验结果表明,该算法具有很强的鲁棒性,能够有效区分机器视觉下植物叶片图像的关键性识别特征,有效解决叶片图像的分类识别中关键特征的描述问题。In order to solve the problem of the classic Local Binary Pattern(LBP)algorithm that only the features of neighborhood pixels of the extracted texture features are considered and the key local and global features are ignored during the texture feature extraction process,an improved local binary pattern algorithm named WCM-LBP is proposed,which is combined with WCM-LBP and WOM-LBP,to extract the features from plant leaf images.It extracts the regional key geometry features and texture features of the leaf images to modify the LBP image descriptor,and uses weighted local mean value and weighted global mean value of the pixels instead of traditional center pixel,and finally extracts the color components of R,G,B channel and the common gray value for image analysis.Combined with the algorithm Semi-supervised Fuzzy clustering with Feature Discrimination(SFFD),this algorithm is applied to the experimental data such as classic Flavia,Swedish,Foliage datasets and self-test photo collections.The experimental results show that the algorithm has strong robustness,can effectively find out the key identification features of plant leaf images under machine vision,and effectively solve the problem of describing the key features in the classification and recognition of leaf images.
关 键 词:图像识别 全局均值 特征提取 颜色分量 植物叶片
分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15