检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王艺[1] 王英[1] WANG Yi;WANG Ying(School of Computer and Information Science,Southwest University,Chongqing 400715,China)
机构地区:[1]西南大学计算机与信息科学学院,重庆400715
出 处:《计算机工程》2021年第10期67-74,共8页Computer Engineering
基 金:西南大学教育教学改革研究项目(2019JY048);第47批留学回国人员科研启动基金。
摘 要:语义图概要的目的是提取语义图的关键信息,形成原数据集的概要模型以解决大规模语义图的理解、查询、应用难题。为提升现有语义图概要方法效率,提出一种基于本体分割的概要方法。通过本体分割算法对语义图进行分割生成扩展子图。采用形式概念分析对每个扩展子图生成元素的偏序格(又称特征集格)。在此基础上,由所有子图的特征集格形成了原语义图的概要。在关联开放数据集和Berlin SPARQL Benchmark数据集上的实验结果表明,该方法具有较好的可扩展性,有效提高了概要方法的效率。Semantic graph summarization is to extract key information from semantic graphs,and generate a summarized model of the original data set to solve problems in understanding,querying,and using large-scale semantic graphs.In order to improve the efficiency of current summarization algorithms,this paper proposes an approach of generating summaries based on ontology partition.The ontology partition algorithm is used to divide the semantic graph into sub-graphs.Then for each sub-graph,its partially ordered lattices(also named characteristic set lattices)of elements are generated using formal concept analysis.On this basis,the characteristic set lattices of all sub-graphs form the summarization of the original semantic graphs.The approach is tested on the Linked Open Data(LOD)dataset and the Berlin SPARQL Benchmark datasets.Results show that the proposed approach exhibits excellent scalability,and a significantimprovement in summarization efficiency.
关 键 词:语义图 知识图谱 关联开放数据 语义图概要 形式概念分析
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229