检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑戍华[1] 南若愚 李守翔 王向周[1] 陈梦心 ZHENG Shuhua;NAN Ruoyu;LI Shouxiang;WANG Xiangzhou;CHEN Mengxin(School of Automation,Beijing Institute of Technology,Beijing 100081,China)
出 处:《北京理工大学学报》2021年第9期970-976,共7页Transactions of Beijing Institute of Technology
摘 要:针对高分辨率眼部图像的瞳孔、虹膜特征快速识别与检测问题,提出了一种轻量化语义分割网络DIA-UNet(double input attention UNet).它采用对称双编码结构同步获取眼部灰度图及其轮廓图特征,并通过双注意力机制实现了解码端的特征筛选,将深层融合特征作为语义分割输出.在CASIA-Iris-Interval和高分辨率瞳孔数据集上测试结果表明,与其他轻量化语义分割网络相比,本文提出的DIA-UNet在保证虹膜、瞳孔分割准确率的同时网络参数个数仅有0.076 Million,处理速度高达123.5 FPS.To deal with the problem of accurate and fast recognition and detection of pupil and iris features with high-resolution eye images,a lightweight semantic segmentation network DIA-UNet(dual input attention UNet)was proposed based on the UNet framework.It was arranged that,a symmetric dual coding structure was adopted to obtain the features of the eye grayscale image and its contour image synchronously,the dual attention mechanism was used to carry out the feature filtering on the decoding end,and taking the deep fusion features as a semantic segmentation output.The test results from the CASIA-Iris-Interval and high-resolution pupil datasets show that,compared with other lightweight semantic segmentation networks,the proposed DIA-UNet can guarantee the accuracy of iris and pupil segmentation,while the number of network parameters is only 0.076 Million and the processing speed is up to 123.5 FPS.
关 键 词:语义分割 双输入结构 注意力机制 轻量化网络 眼部特征
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222