融合评分和社会化标签的两阶段深度推荐方法  被引量:1

Two-stage deep recommendation method combining rating and social tags

在线阅读下载全文

作  者:张会月 张红宇[1] Zhang Huiyue;Zhang Hongyu(School of Business,Central South University,Changsha 410083,China)

机构地区:[1]中南大学商学院,长沙410083

出  处:《计算机应用研究》2021年第10期3000-3004,共5页Application Research of Computers

基  金:国家自然科学基金资助项目(71971221)。

摘  要:当前融合评分和标签的推荐方法对两种数据的挖掘程度有限,且大多数局限在提取浅层的线性特征层面。深度学习技术被成功应用于推荐方法,然而数据的稀疏性导致学习的潜在特征效果不好,因此,提出一种融合评分和社会化标签的两阶段深度推荐方法。首先,利用堆叠降噪自编码器分别从评分和社会化标签中提取用户、项目的潜在特征;其次,将学习的潜在特征进行拼接作为用户、项目完整的潜在特征,并与原始评分相结合构建监督学习数据集;最后,将构建的数据集作为BP神经网络的输入以训练评分预测模型。为降低训练误差,通过联合训练的方式进行参数学习。基于MovieLens、Last.FM数据集的实验表明,该方法与几种基准方法相比有更好的推荐性能。The current recommendation methods that integrate ratings and social tags do not fully mine the features contained in the original data,and most of them are limited to extracting shallow linear features.Deep learning technology has been successfully applied into the recommendation methods,but the learned latent factors may not be effective due to the sparsity of original data.Thus,this paper proposed a two-stage deep recommendation method that combined rating and social tags.Firstly,it used the stacked denoising autoencoder to extract latent features of users and items from ratings and social tags.Secondly,it concatenated the learned latent features as the complete latent features of users and items,and combined with the original ra-tings to construct a supervised learning dataset.Finally,it used the constructed dataset as the input of the BP neural network to train the rating prediction model.To reduce the training error,it performed parameter learning through joint training.Experiments based on MovieLens and Last.FM datasets show that the proposed method has better recommendation performance than several benchmark methods.

关 键 词:推荐方法 堆叠降噪自编码器 BP神经网络 深度学习 社会化标签 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象