检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张帆 杨勇 骆少明 黄福 成克强[2] ZHANG Fan;YANG Yong;LUO Shaoming;HUANG Fu;CHENG Keqiang(Department of Mechanical and Electrical Engineering,Guangdong Polytechnic Normal University,Guangzhou 510665,China;The Fifth Electronics Research Institute of the Ministry of Industry and Information Technology,Guangzhou 510610,China)
机构地区:[1]广东技术师范大学机电学院,广州510665 [2]工业和信息化部电子第五研究所,广州510610
出 处:《西南大学学报(自然科学版)》2021年第10期84-91,共8页Journal of Southwest University(Natural Science Edition)
基 金:广东省自然科学基金项目(2016A030313730);广东省科技创新战略专项资金“攀登计划”专项资金项目(pdjh2020a0330).
摘 要:植物工厂实现大规模、高速和自动化作业需要快速、精准地掌握种苗发芽生长信息,在线检测是关键.本文设计了一套基于机器学习的在线视觉检测系统,用于检测穴盘苗的发芽率,并计算种苗的生长方向,进而定位种苗所在的穴位.该系统用数字相机联网技术,采集穴盘苗图像,基于机器学习方法制作训练样本,构建训练集和测试集,通过多视图融合方法估计每个穴位有苗的可信度,并依据可信度来判断发芽率情况.试验结果表明,单视图检测种苗速度快、误检率低,但检出率较低;采用多视图融合的方法后穴盘苗检出率达到95.16%,穴位检出率达到100%;本文提出的多视图融合估计可信度方法具有较高的检测精度,而且精度仍有提升的空间,研究结果可为单粒播种的大规模、高速和自动化作业提供技术参考.China is a large vegetable production and consumption country,and the demand for vegetable planting is very huge.At present,more than 60%of vegetable planting adopts seedling transplanting,and the traditional transplanting operation requires a large number of manual operations,which restricts the development of vegetable cultivation.Facility cultivation has developed rapidly in recent years due to its little dependence on weather,safety and pollutionlessness.Although reseeding can improve the efficiency of plug seedling transplanting,it wastes seeds and manpower and restricts the improvement of the whole production of plant facto ries.Large-scale,high-speed and automatic operation requires fast and accurate sensing of the germination of plug seedlings and the growth information of transplanted seedlings,and object detection is the key.Object detection not only recognizes object categories,but also predicts the location of each object.With the development of computer vision technology,the efficiency of object detection is greatly improved as a new solution which is provided to replace the traditional method of manual visual detection.In this paper,an online vision detection system based on machine learning is proposed,which is used to detect the germination rate of plug seedlings and calculate the growth direction,so as to localize the foothold of seedlings.This online vision detection system uses digital camera networking technology to collect the images of seed germination,makes training based on the machine learning method,constructs atraining set and atest set,calculates the dependability of each foothold of seedling by multi-view fusion algorithm,and judges the germination situation according to the dependability.The results of an experiment show that the single view has fast detection speed and low false detection rate,but low accuracy,whilethe adoption of multi-view fusiongives asuccess rate of plug-seedling detection of 95.16%and asuccess rate of seedling location of 100%.In conclusion,the on-line multi-vi
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46