检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾绍华[1,2] 王琪 佘春燕 王帅 罗达璐 ZENG Shaohua;WANG Qi;SHE Chunyan;WANG Shuai;LUO Dalu(College of Computer and Information Science,Chongqing Normal University,Chongqing 401331,China;Chongqing Research Center on Engineer Technology of Digital Agricultural&Services,Chongqing 401331,China;Chongqing Master Station of Agricultural Technology Promotion,Chongqing 401147,China;Chongqing Shapingba District Agriculture and Rural Committee,Chongqing 400030,China)
机构地区:[1]重庆师范大学计算机与信息科学学院,重庆401331 [2]重庆市数字农业服务工程技术研究中心,重庆401331 [3]重庆市农业技术推广总站,重庆401147 [4]重庆市沙坪坝区农业农村委员会,重庆400030
出 处:《西南大学学报(自然科学版)》2021年第10期167-180,共14页Journal of Southwest University(Natural Science Edition)
基 金:国家自然科学基金项目(62003065);重庆市高校创新研究群体资助项目(CXQT20015);重庆市教委科学技术研究重点项目(KJZD-201900505);重庆师范大学研究生科研创新项目(YKC20032).
摘 要:自然环境下机器视觉采集的土壤图像存在阴影,土壤图像阴影检测将消除或者减弱阴影对后一步的子图分割及土种识别的影响.为了提高土壤图像阴影和非阴影的区分度,实现阴影检测,重构了比率(α)特征,并通过高斯平滑分别获得亮度(I)和比率(α)特征直方图的2个主峰值点,缩小分割阈值搜索区间以减少减法直方图求高保留率点(F)的次数;再引入拉伸因子对2个特征的保留直方图拉伸,增大阴影和非阴影保留率差异,以获取其高保留率点F;最后,在搜索区间构建亮度(I)和比率(α)特征的64等份中位点及其对应F的2条折线的交点,即亮度(I)和比率(α)特征的F值相等点,获得交点对应的亮度(I)和比率(α)特征值为阴影检测阈值,分割土壤图像阴影和非阴影.仿真实验显示:本文算法相较于对比实验具有更好的分割精度,能自适应检测土壤图像阴影,算法是有效的.Shadows exist on the soil images collected by machine vision in the natural environment,and their detection is a necessary preprocessing work to eliminate the influence of shadows on sub-image segmentation and further soil species identification.In order to improve the discrimination between shadows and non-shadows of the soil image,the Ratio(α)feature is reconstructed in this paper.The two main peak points of Brightness(I)and Ratio(α)feature histogram are obtained through Gaussian smoothing,and the search interval of segmentation threshold is narrowed by the main peak points and the times of computing FHRRP(F)of subtraction histograms are reduced.Then,a stretch factor is introduced to stretch the retention histograms of the two features to increase the difference of the retention rate between the shadows and the non-shadows so as to obtain the FHRRP(F).Finally,the order points in the search interval and their corresponding FHRRP(F)in the 64-division midpoints of the Brightness(I)and Ratio(α)features are used to form the intersection of the two feature polylines,that is,the point where the FHRRP(F)values of the Brightness(I)and Ratio(α)features are equal,and the corresponding Brightness(I)and Ratio(α)feature value are obtained as the detection threshold to segment the shadows and non-shadows of the soil image.The results of a simulation experiment show that the shadows and non-shadows are segmented by the improved algorithm,and their segmentation accuracy is better than the contrast algorithms.The algorithms can adaptively detect the shadow of the soil image.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.216.30