Semiparametric Bayesian analysis of high-dimensional censored outcome data  

在线阅读下载全文

作  者:Chetkar Jha Yi Li Subharup Guha 

机构地区:[1]Department of Statistics,University of Missouri,Columbia,MO,USA [2]Department of Biostatistics,University of Michigan,Ann Arbor,MI,USA

出  处:《Statistical Theory and Related Fields》2017年第2期194-204,共11页统计理论及其应用(英文)

基  金:National Science Foundation[grant number DMS-1461948].

摘  要:The Surveillance, Epidemiology and End Results (SEER) cancer database contains survival data forUS individuals diagnosed with cancer. Semiparametric Bayesian methods are computationallyexpensive to fit for such large data-sets. This paper develops a cost-effective Markov chain MonteCarlo strategy for censored outcomes to fit a semiparametric bayesian analysis of SEER data ofNew Mexico. We use an accelerated failure time model, with Dirichlet process random effectsfor inter-subject variation, and intrinsic conditionally autoregressive random effects for spatialcorrelations. The results offer insights into differences in breast cancer mortality rates betweenethnic groups, tumor grade and spatial effect of counties.

关 键 词:ICAR models data squashing Dirichlet process generalised Pólya urn process big data 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象