基于LabVIEW+VDM的混凝土坝裂缝检测方法  被引量:12

Crack detectionmethod of concrete dams based on LabVIEW+VDM

在线阅读下载全文

作  者:王一兵 包腾飞[1,2,3] 高治鑫 WANG Yibing;BAO Tengfei;GAO Zhixin(College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China;State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China;College of Hydraulic&Environmental Engineering,China Three Gorges University,Yichang 443002,China)

机构地区:[1]河海大学水利水电学院,江苏南京210098 [2]河海大学水文水资源与水利工程科学国家重点实验室,江苏南京210098 [3]三峡大学水利与环境学院,湖北宜昌443002

出  处:《水利水电科技进展》2021年第5期76-82,共7页Advances in Science and Technology of Water Resources

基  金:国家重点研发计划(2018YFC1508603,2016YFC0401601);国家自然科学基金(51579086)。

摘  要:针对混凝土坝裂缝人工检测低效、有风险的问题,提出基于LabVIEW+VDM的混凝土坝裂缝分析方法。先采集含标定板的大坝裂缝图像,使用Vision Development Module(VDM)的Vision Assistant(VA)对裂缝图像进行处理,采用VDM的骨架函数结合形态学运算提取裂缝骨架,运用粒子分析方法计算裂缝长度、宽度和面积,将VA中实现的处理方法生成脚本代码,再导入LabVIEW编程平台进行调试及GUI开发。结果表明:VDM视觉开发包能够独立完成混凝土坝裂缝的检测功能,基于LabVIEW开发的程序有助于行业人员快速检测分析混凝土坝裂缝,及时诊断和排除混凝土大坝安全隐患。Aiming at the problem of inefficient and risky manual detection of cracks in concrete dams,a crack analysis method for concrete dams based on LabVIEW+VDM was proposed.The Vision Assistant(VA)of the Vision Development Module(VDM)was used to process the crack images.The skeleton function of VDM is combined with the morphological operation to extract the skeleton of the crack,and the particle analysis method was used to calculate the crack length,crack width and crack area.The processing method implemented in VA was used to generate script code,and then imported into the programming platform LabVIEW for debugging and GUI design.The results show that the VDM can independently complete the detection function of concrete dam cracks.The program developed based on LabVIEW helps industry personnel quickly detect and analyze cracks in concrete dams,timely diagnose and eliminate hidden safety hazards.

关 键 词:混凝土坝 裂缝检测 计算机视觉 LABVIEW 

分 类 号:TV698.1[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象